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One-dimensional and two-dimensional dam-break flow experiments, that had
been performed on two original laboratory installations, were numerically
simulated using the MacCormack explicit computational scheme. Accuracy and

conservation properties were analysed.
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1 INTRODUCTION

The MacCormack explicit numerical scheme has
gained considerable popularity over the last few
years in dealing with one-, and two-dimensional
unsteady open channel flows. Reliable results and
relative ease by which ‘weak solutions’ can be
obtained, make this scheme particularly suitable for
dam-break problems. The performance of the scheme
in dealing with one-dimensional dam-break flows has
been evaluated by several authors.'™ However, there
are only few experimental data on two-dimensional
flows in literature.>> Therefore, the purpose of this
paper is to present some experiences with the applica-
tion of the MacCormack scheme, especially those
referring to two-dimensional dam-break laboratory
experiments.

2 GOVERNING EQUATIONS

The unsteady, two-dimensional open channel flow (in
the horizontal plane) can be described by the depth-
averaged equations of mass and momentum conserva-
tion written in the matrix form:

(1)

61

h uh vh
V=|uh|G= |u’h+igh’ |H= uvh
| vh uvh v*h+ %gh2
(2)
[ 0
T = | gh(Sox — Spx) 3)
| gh(Soy — Sp)

In these equations, x and y are space coordinates and
t is the time coordinate. Water depth is designated by 4,
the depth averaged velocities in x and y directions by u
and v respectively, and the acceleration due to gravity by
g. Bottom bed slopes are S,, and S,,, while Sy and Sy,
correspond to the energy gradients that are approxi-
mated by the Manning’s formula:

nuvi? +o? oV + 2
Sfx =1 Sf = (4)
h4/3 y h4/3

The set of equations, given in the form of the matrix
eqn (1) together with the expressions (2) and (3), is a
system of quasi-linear hyperbolic partial differential
equations. Since the equations are written in the conser-
vation form, they can admit ‘weak solutions’, i.e. solutions
that may lead to discontinuities such as shock waves
induced by a dam failure. The MacCormack numerical
scheme is one of the several techniques to obtain such
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solutions. Although the derivatives in eqn (1) are
discretized to the first order of accuracy, it is claimed
that the scheme is of the second-order of accuracy in
both space and time.5~® It is also claimed that it does
not require shock-fitting procedure> — a feature
particularly suitable for solving dam-break problems
in natural channels.

The MacCormack explicit finite-difference scheme
consists of a two step predictor—corrector sequence:’

— Predictor step:

P _
Vij=Vij— Ay
— Corrector step:

At At
_ P P P
Vij= Vii— Axny{j - Ayg—'yH"’j + AtTi’j (6)
— New values:

1 . . .
Vi/,j=§(Vi,j+Vi,,‘) (1<i<N;1<j<M) (7)

In the proceeding equations, V;; is the vector of the
dependent variables from the previous time level, V{’J
and V;; are the corresponding vectors calculated in the
predictor and corrector steps respectively, while ¥} j s
the solution vector at the current computational time
level. The unknown depth-averaged velocities are finally
calculated from Vj ;: u; ; = (uh)' /K and v} ; = (vh)' /K.

The spacial difference operators (% and %) in eqns (5)
and (6) refer to backward and forward differencings:

#:Gi ;=G ;— Gy jand #.G; ;= Gy ; — G
(8)
where the subscript indicates the direction of differenc-
ing.

The difference operators are repeated every fourth
time step (Table 1), in order to include different flow
regimes that might simultaneously occur in the channel.>’

The stability criterion is defined by the Courant—
Friedrichs—Lewy condition:?

Ax Ay > o)

At < min ,
(u + gh)max (U + gh)max

3 VERIFICATION OF THE MACCORMACK
SCHEME

The experimental verification of the aforedescribed
numerical scheme was performed using the measure-

Table 1. Difference operator sequence

Time Predictor Corrector

step X y X y
1 B B F F
2 F F R B
3 B F F B
4 F B R F
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Fig. 1. Experimental installation for investigation of one-
dimensional dam-break flows:'? (1) glass-walled flume, (2) lower
tank, (3) pump, (4) upper tank (reservoir), (5) stilling elements,
(6) control weir, (7) fluid supply rubber tube, (8) removable
gate, (9) depth measurement probes, (10) velocity measure-
ment probes and (11) data acquisition and processing system.

ment results that had been registered on the two
experimental rigs in the Hydraulic Laboratory at the
Faculty of Civil Engineering in Belgrade.

One-dimensional flow experiments

The results from a rig, consisting of 4-5m long and
0-15m wide laboratory flume with glass walls and
adjustable bottom slope (Fig. 1), were used to verify the
numerical simulation of one-dimensional unsteady flow.
The flow was caused by a sudden release of the water
stored in the reservoir that had been formed in the
upstream part of the flume. The membrane ‘Druck’
probes, together with an electronic data acquisition and
processing system were used for water depth measure-
ment at four control profiles situated at x = 0-75, 125,
1-75, 2:25m from the gate. The glass walls had been
covered with a square net (Ax = Az =1cm) and the
water levels were recorded by a high-speed camera. Thus
it was possible to register the water depths on every 5cm
along the flume.

The equivalent Manning’s roughness for the canal
was calibrated using the steady flow data.

The evolution of the measured and calculated flow
depth profiles of an experiment in which the initial water
depth in the reservoir was H = 0-3m, the bottom canal
slope 0-1% and Manning’s coefficient » = 0-009 m3s
are shown in Fig. 3. The upstream boundary condition
was defined in accordance with the gate maneuver in this
experiment (Fig. 2). The upstream flow discharge was
calculated from the equations for the shock movement.’
No artificial viscosity was used.

For the sake of easier comparison with the measure-
ments, the time step, used in this simulation, was kept
constant Az = 0-01s, which resulted in the maximum
Courant’s number value of 0-6.

It can be noticed (Fig. 3) that the calculated flow
depth profile follows the shape of the experimental one.
The quantitative analysis has shown that the water
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Fig. 2. The stage hydrograph at the gate cross-section, used as
the upstream boundary condition.

depth differences are 12% on the average. The wave
celerity prediction is good, while the computed wave
front height is somewhat higher than the measured one.

The conservation properties’ analysis of the MacCor-
mack computational scheme has shown a maximum
volume loss/gain of 0-4% for this particular test case.
Good conservation properties of the scheme have also
been reported in scientific papers for one-dimensional
flows (see for instance Refs 1 and 4).
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Fig. 4. Pilot laboratory model for the two-dimensional dam-
break flow investigation."

Two-dimensional flow experiments

The pilot laboratory installation for the two-dimen-
sional dam-break flow investigation is shown in Fig. 4.

In the physical experiment, the water was released
from the reservoir through an opening 0-1m wide,
which was formed by instantaneous removal of a gate
between the reservoir and the horizontal surface down-
stream. The depths’ variations at chosen points were
recorded by 2-mm thick capacitance probes, while the
stream pattern has been filmed by a high speed camera.
The capacitance probes had been calibrated in the flume
under the steady supercritical flow conditions for the
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Fig. 3. Comparison of the calculated and the measured flow profiles in the laboratory flume.
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Fig. 5. Unsteady flow experiment on the two-dimensional pilot model at # = 0-6s.
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Fig. 6. Numerical simulation of the experiment.
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Fig. 7. Wave front advancing.
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Fig. 8. Calculated and measured stage hydrographs.
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Fig. 10. Vector field and contour lines at ¢ = 1-4s.

water ‘piling up’ effect on the upstream side of the
probes, caused by the high wave front velocities.

An experiment in which the initial reservoir water
depth was H =0-15m, and the bottom roughness
n=001m '"3s is described in this paper. The experi-
ment was numerically simulated using a computational
grid with 3360 points, and the individual mesh size of
Ax = Ay = 0-025m. The boundary conditions' were set
in the form of zero velocities u and v at the side walls.
The initial condition at the opening was defined according

to the theoretical solution for the one-dimensional dam-
break problem: 4 = (4/9)H, u = (8/27)\/gH,and v =0,
while for numerical reasons, the initial depth down-
stream from the reservoir was set to 0-001 m.

Figure 5 depicts the water wave propagation 0-6s
after the gate removal, and Fig. 6 the results of the
numerical simulation. It can be noticed that the wave
front form has been generally well reproduced using the
MacCormack numerical scheme.

The form and the position of calculated and measured
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wave fronts are presented in Fig. 7. In the short period
of time after the flow initiation, the form and the
position of the calculated wave front do not coincide
with the measured ones (¢ = 0-6 and 0-9s). The recorded
wave front is more elongated in the longitudinal
direction than the predicted one. This can be explained
by applying particular initial conditions at the gate
cross-section. Later on, these differences tend to
diminish (z = 1-4s). The results of some other authors,
obtained by different numerical schemes, show similar
tendency.’ A time needed for the wave front to reach the
outflow boundary of the physical model is 1-65.

The comparison between calculated and recorded
stage hydrographs is given in Fig. 8. These hydrographs
pertain to grid points 613, 933, ..., 1589, marked in Fig.
7. The water depth differences are the greatest at the
onset of hydrographs, due to the dispersive errors of the
scheme. No attempt has been made to smooth oscilla-
tions by using the artificial viscosity. Apart from these
errors, there is a fairly good agreement of the calculated
and measured depths (under 18%). A longitudinal water
depth profile along the center-line of the opening is
presented in Fig. 9 at t = 1-4s. The agreement between
computed and measured results is satisfactory (under
13%). Dispersion error of the scheme is noticeable at the
steep front. More realistic results in the vicinity of the
wave front could be obtained (if required) by using the
artificial viscosity smoothing technique.’

Figure 10 presents the calculated velocity field and the
contour lines for the same time instant.

4 CONCLUSIONS

The qualitative and quantitative analysis of the numer-
ical simulation results for one- and two-dimensional
laboratory experiments have shown that the MacCor-
mack numerical scheme yields physically plausible
results, and can be efficiently used in solving dam-
break problems for which a simulation with limited
numerical diffusion is required.

The wave celerity and the water depth predictions,
made by this computational scheme, for one-dimen-
sional dam-break flows, agree well with the results of the
laboratory measurements, as it was reported by other
investigators.1

The wave front advancing depends, during the initial
phase of the two-dimensional numerical simulation, on
the imposed initial condition at the dam cross-section.
However, the influence of the applied initial condition
rapidly decreases in time. The water level differences
between the computed and the measured values are within
acceptable limits. Additional validation of the two-
dimensional model against field data would be valuable.
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