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- INVITED LECTURE -

GEOMETRIC PROPERTIES OF THE “FLOWER” CONCAVE
ANTIPRISMS OF THE SECOND SORT

Marija Obradovi¢
University of Belgrade, Faculty of Civil Engineering
PhD., Associate Professor, marijao@grf.bg.ac.rs

ABSTRACT

This study presents a continuation of the research on the concave polyhedra of the second
sort, adding to this family a new group of related polyhedra. They are formed over a specific type of
isotoxal concave polygons that allow geometric arrangement of a double row of equilateral
triangles into formations which enclose a deltahedral lateral surface without overlaps and gaps. As
in all other representatives of the concave polyhedra of the second sort, we expect to find here the
"major" and "minor" type, depending on the way we fold the net. This research has identified both
these polyhedra types, which have the same planar net, but are formed over different basic concave
polygons. The origination, constructive methods and properties of these solids are elaborated in the

paper.

Keywords: concave polyhedron; concave polygon; polygon elevation; antiprism;
isotoxal; constructive geometry

INTRODUCTION

Triangulated surfaces, as one of the most common ways of visualizing complex free-form shapes, as well as
parametric and implicit surfaces are among the most recognizable features of computer graphics in recent
decades. Numerous software programs use algorithms that can represent any shape by a series of connected
triangles, so that irregular deltahedral surfaces, made up of arbitrary (scalene) triangles, form the weft of any
free-form shape. Thus, triangular nets have the ability to obediently apply our ideas via digital tools and adapt to
any desired surface, discretizing it. However, if we introduce more geometric regularities into the process of
forming the net itself and also increase the level of the regularities expected from the resulting shapes, the free
form inevitably gives way to the geometric one.

If we introduce a requirement that each triangle should be equilateral, the surface continuous and convergent,
we will pose a problem that can be solved by a different, perhaps simpler approach. Knowing the properties and
relations of linear and angular measures within an equilateral triangle, we can solve the task with classical
geometric methods, from trigonometry to constructive geometry. Given an additional condition: that these
regular deltahedral surfaces should also encompass regular polygonal bases, we come to a few convex solutions,
such as Platonic solids: tetrahedron, octahedron and icosahedron, and Johnson solids: J12 and J13 (Johnson,
1966) while convexity alone adds three Johnson solids more: J17, J51 and J84. However, if we exclude
convexity as a criterion, we are left with various other possibilities. Some of them have been described in a
series of papers (Obradovi¢ et al.., 2013-II; Misi¢ et al.., 2015, Obradovi¢ et al.., 2017) dealing with composite
concave deltahedra based on the geometry of concave polyhedra of the second (or higher) sort with regular
polygonal bases. The later solids, the concave polyhedra of the second sort, serve as a foundation of this
research as well. They include: concave cupolae (Obradovié et al.., 2008), concave pyramids (Obradovi¢ et al..,
2014; Obradovi¢ et al.., 2015) and concave antiprisms of the second sort (Obradovi¢ et al.., 2013-I). The sort is
determined by the number of rows of equilateral triangles in the lateral surface, which is directly related to the
number of resulting solutions (ergo, heights of those solutions). The ‘sorts’ are regularly of an even number
(Misi¢, 2013), so we have concave polyhedra of the second, fourth, sixth, etc. sorts, except for the antiprisms
which are always of the second sort.

In this paper, as an addition to the above concave polyhedra formed over regular convex polygonal bases, we
look for concave polyhedra that are formed in a similar way, but with concave polygon of multilateral k-fold
symmetry as the basic one. We start from the ones that can create an infinite deltahedron (Wachman et al..,
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1974). Those are (concave) antiprisms, formed over two identical polygonal bases. Given that their star-like
bases are not actually stellations of convex polygons, the solutions obtained will not be polygrammatic
antiprisms (Huybers, 2001), but original solids with all edges of equal length and with deltahedral lateral
surfaces. This paper explores the shapes of these bases and the ways to form the solids out of the same triangular
net so that we get feasible solutions without gaps or overlaps of the triangular faces.

2. RESULTS OF PREVIOUS RESEARCH

Two previous studies are crucial to understanding the method and the results of this research. The first one
(Obradovi¢ et al.., 2013-I) concerns the definition of the forms and measures of the concave antiprism of the
second sort, CA-II. We have shown that they are formed, similarly to the concave cupolae or concave pyramids
of the second sort, by folding a net of double series of equilateral triangles, and that, depending on the way the
net is folded, they may be higher (major, M) or lower (minor, m) in height. In other words, they can exist as two
types of the concave antiprisms, denoted by: CA-II-nM and CA-II-nm. Fragments of these solids’ surface were
used to obtain concave rings-like surfaces, crucial for the next study.

The second study (Obradovi¢ et al.., 2019) considers a special way of assembling the major type of the solids
mentioned above, CA-II-nM, so that their lateral surfaces form deltahedral closed rings. These rings are
consequently of the second sort, thus denoted by CDR-II. They are formed by closing the full circle via 21 polar
array of unit spatial decahedral cells, shown in Fig. 1 a) and b), formed by two partly overlapped unit
hexahedral cells of two adjacent CA-II-nMs (Obradovi¢ et al.., 2019, Fig. 2). To perform a precise array, we
have determined the angle @ (or @) found between the symmetry planes (¢ or 1) of the adjacent pair of CA-II-
nMs (Fig 1 ¢ and d). The planes, seen as the axes of symmetry in the top orthogonal view are defined by the
outermost points of the unit decahedral cells. Their multiplication by an integer K gives a full circle, so that the
ring is obtained.

In this paper, only the angle  is relevant for the calculus and the construction of the lateral surface.

Decahedral cell is

Spatial
decahedral cell

oriented inward

Center
0
of the ring

Two concave antiprisms (CA-II-nM)
joined by common pair of triangles

Center

of the ring

Spatial
decahedral cell Decahedral cell is
(Top view) oriented outward

b) c)

Figure 1: (a) Two paired concave antiprisms of the second sort (CA-II-nM) (b) Unit spatial decahedral cell (c) Two ways of forming
concave deltahedral rings (CDR-II) using the unit decahedral cells (Source: Obradovi¢ et al. (2019); illustration is modified Fig. 2)

The obtained rings share key features of concave polyhedra of the second sort: multilateral k-fold
symmetry, deltahedral lateral surface and the same folding methods, which produce its major and minor type.
Naturally, since they are derived from CA-II-nM’s fragments, they share their linear and angular dimensions.

In the top view, the shapes of CDR-II can be flower-like or star-like, with distinct shapes (A, B) or even more
complex, mixed with fragments of CA-II-nMs (As, By) in between “petals” or “star-points”, depending on the
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number of sides (n) in the CA-II-nM’s base polygon from which the rings originate. The number # conditions
the number &, which represents the number of decahedral cells in the ring. If the full ring is closed with k unit

cells, then k=K, which is the number of “petals” or “star points” in the newly obtained rings. Based on the
21

formulae (1) and (3) in (Obradovi¢ et al., 2019), for the angle @, and having that: kpp == the
interdependence between n and & can be expressed as:

3n
k—E;nEN (qu)

The aforementioned study, of which this research is a continuation, considered only the forms of rings
obtained by using (decahedral) fragments of CA-II-nM, without dealing with geometry of the bases thus
obtained, since eight different possible ring shapes can be identified: A, Ag, A,, B, Br, B, C and Cy. Thus, » had
to be an integer, as the number of sides in the basic regular polygon of the CA-II-nM, while £ was usually a
rational number, and in only a few special cases an integer too (when the pure forms A and B of the ring are
obtained). Therefore, in general case, we needed to correct k by a factor j to convert the fraction & to an integer
K, which represents the number of “petals” or “star points” in the deltahedral rings.

In this study, the subject of the research are solids whose lateral surfaces are just pure forms (A and B) of
concave deltahedral rings, with a number of "petals" that can be of any integer k € N (CDR-II-k). Also, unlike
the previous research, we do not examine only the lateral surfaces, but the whole solid, including the shapes of
the base polygons. In addition, we are looking for a connection between the A and B ring shapes and the major
and minor solid types.

3. INITIAL SETTINGS OF THE RESEARCH

This paper investigates an entire group of polyhedra generated with a precise polar array of & spatial
decahedral cells, with no additional cells in between. Hence, we are looking for the distinct forms of "flowers"
only, which are obtained by folding the net of the deltahedral lateral surface. In this case, the number n will not
always be an integer as it was with CDR-II, but the number & will, as an assigned number of sides in the regular
k-sided polygon which we elevate! (Griinbaum et al.., 1986) by triangles, i.e. "petals" of the new non-convex,
2k-sided polygon. This 2k-sided, star-like isotoxal® polygon will be the base polygon of the “flower” concave
antiprism, and finding its geometrical properties is one of the foci of this paper.

We are investigating a special type of concave polygons that arise as elevated k-sided regular convex polygons,
and have the property that their concave angles are conjugate to the interior angles of the n-sided convex

polygon.
3.1. Minor Type of Floral antiprisms of the second sort

Although in the previous research we used CA-II-nM, i.e. the antiprisms of the major height for the
procedure of obtaining CDR-II-K, the resulting structures came out to have all the characteristics of the lower-
height solid type. Why? Because the disposition of protruding and indented vertices and edges, when viewed
from the exterior, gives the result that corresponds to the way the triangular net is folded to get the minor type of
concave polyhedra of the second sort. The central vertices G; and G, of the unit decahedral cell (Fig. 1a, b),
originating from the central vertex G of the hexahedral cell in the CA-II-nM are protruding, which gives a lower
height (Obradovi¢ et al.., 2013-I), as it is the case with all the other C-II-n representatives (Obradovic¢ et al..,
2008; Obradovi¢ et al.., 2014; Obradovi¢ et al.., 2015). Given that we are here applying the same method of
folding the triangular net in two different ways, major and minor, with this we obtain the lateral surface of minor
height, which will be evidenced by the elaboration of the major type, discussed later.

Let us first look at the geometric properties and the method of generating the “flower” antiprisms of the second
sort with k petals, of minor type (FA-II-km). Inverting the procedure of the previous research, now the input is &
- the number of "petals" we wish to obtain, so the number # - the assumed number of the sides in CA-II-nM that
produces this deltahedral surface is derived from the above formula (Eq. 1):

! Griinbaum used the term ,,elevatum* for the positive height, i.e. pointing outward pyramids in augmentations (Weisstein
https://mathworld.wolfram.com/Augmentation.html) .

? Isotoxal polygon is an equilateral, edge transitive polygon, i.e. it has only one type of edge.
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Ny, = keN (Eq.2)

k-3

Although n will not be an integer in most cases, this will not interfere with the formation of deltahedral
ring (CDR-II-k) for any k € N. In all cases, the interior angles of n-sided polygon define the exterior angles of
the star-like 2k-sided polygon.

In Fig. 2 we see the starting setup with the elements we use to trigonometrically determine all the necessary
angular measures for defining the basis 2k-sided polygon.

\ nm-sided polygon

k-sided
polygon

sided polygon

k-sided polygon

g

2k-sided polygon

Figure 2: The way of forming the basic 2k-sided star-like polygon based on the k-sided regular convex polygon, the key angles and the final
shape of the polygon (the example of heptagon)

We first need to determine the value of the angle w.,, the interior angle of the n-sided polygon, then to
define the other necessary angles depending on it, above all the angle ¢, in the “star-polygon” as its conjugate
angle, and the angle v,, as the base angle of the elevatum triangle. This way, a special type of concave, isotoxal
polygon arises as an elevation of the k-sided regular convex polygon.

The calculated values of the angles: pm, A, tim, Um, &m and &, (Fig. 2) relevant for determining the
interdependence between the n-sided and 2k-sided polygons are given by the formulas in Table 1.

Table 1: Overview of all the angles relevant for determining the 2k-sided star-like concave polygon (base "flower" polygon) for the minor
type of “flower antiprism” FA-II-km

Angle = f(k) Equation

Do = 271'(]( - 3) (Eq.3)
5k

p = m(k —2) (Eq4)
2k

Hom = w ( EqS)
10k

o _ n(k +2) (Eq.6)
5k

& = TGk -4 (Eq.7)
10k
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&m = n(7k — 6) (Eq.8)
S5k

The obtained polygon will be neither a regular star polygon® (Kepler, 1619/1968; Coxeter, 1969) i.e.
stellation, or polygram, nor a regular compound polygon (see: Bowers, 2012), except in two special cases. It is
an equilateral, isotoxal star polygon with angles such that:

&m =5+ 38 (Eq.9)

Table 2 shows the interdependencies of the numbers k£ and n. We can see how the values of n in the outer
polygon change as the values of & increase. We notice that when & tends to infinity, # tends to number 5, which
can also be verified by the Eq. 1.

Table 2: Minor type of FA-II-k; Interdependence of the number of sides of two conjugated polygons: k-sided and n-sided

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

8.75
7.5
7.14
6.875
6.66
6.36
6.25
6.15
6.07
5.94
5.88
5.94
5.88

6.5

We find that both & and n are integers only in 4 cases (plus 2 in which the associated number is infinite), as
shown in Table 3. This, however, does not in any way interfere with the formation of the star polygon for any
value of k € N. These 4 cases are the ones where CA-II-nM and FA-II-km can be adjoined and match face to
face so that they can be arranged as modular elements.

Table 3: Minor type of FA-II-k - Cases when both k and n are integers

k 3 4 6 8 18 ©

N =735 © 20 10 8 6 5

In the case of k = 8, there is a unique situation when the 2k-sided polygon is simultaneously a stellated
polygon - obtuse octagram {8/2} (Griinbaum, et al.., 1986), a regular compound polygon and a flower (minor)

polygon.
As stated above, the sides of this “flower” star polygon are all of equal length, a, which is the side of an

equilateral triangle in the lateral surface. The question we have to resolve now is what the arrangement of
equilateral triangles in the deltahedral surface of such an FA-II-km will look like.

3.2. Description of the Constructive Procedure

Each “petal” of the “flower” antiprism consists of ten equilateral triangles, organized as described in
(Obradovi¢ et al.., 2019) and forming a unit decahedral cell (see Fig. 1). These cells are connected to the
adjacent ones by the outermost edges and, thus arrayed, they close the annular lateral surface.

The decahedral unit cell has two planes of symmetry:

e the vertical one, passing through the midpoint of the edge GG, and the centroid (K) of the base
polygon,
e the horizontal one, passing through the vertices G; and Gy, parallel to the planes of the bases.
Due to the later, in the top view, the triangles that constitute it are seen as overlapped, two by two. Thus, we will

see only 5 triangles organized around each “star elevatum” ABC of the initial 4-sided polygon, the matrix for the
2k-sided isotoxal "flower" polygon (Fig. 3 c).

It is imperative that in the first projection (top view) all the triangles from the lateral surface should be projected
into congruent triangles, since both bases of the concave antiprism are, by definition, congruent and all the

3 According to one of Kepler's definitions, not only stelations, but isotoxal concave polygons are also named 'star polygons'.
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triangles are set at the same angle with respect to them, in order to span the same height (Fig 3 b). Therefore, the
base angles in these isosceles triangles are all equal and amount to the value denoted by a.

The 5 visible triangles (seen in top view) from the unit decahedral cell are arrayed in an open polygon with 7
vertices: Hi, C, Gi, A, Gz, B and H» (enumerated clockwise) as shown in Fig 3 a) and b). Given that 3 of these 7
vertices coincide with the vertices ABC of the base star polygon, we come to the conclusion that all the
(projected) vertices of the decahedral unit cell lie on the same circle ¢, determined by the vertices A, B, and C.
The vertices G; and G are easily found in the intersection of the normals of the sides AB and BC respectively,
with the circle c itself (Fig. 3 a), while the vertices H; and H, are found at the intersection points of the circle ¢
and the symmetry axes - planes (o) of the base polygon, set through the vertices B and C respectively.

Then, with the polar array of k& identical decahedral cells, and with the center in the intersection point (K) of
their symmetry planes (c), we form the entire ring (Fig. 3 d).

In Fig. 3 e) we can see the first orthogonal projection of the "flower" antiprism’s lateral surface thus obtained.

Deltahedral lateral
surface in Top view

Figure 3. Construction and polar array of a single decahedral cell

3.3. Determining the height of the solid

In order to fully define the solid, we need to determine the heights of the vertices. According to formula (1)
in (Obradovic et al.., 2019), the angles « seen in the first projection are the base angles in the isosceles triangle,
which every triangle from the deltahedral surface is projected into. We can now calculate this angle « as f (k).

_ m(k+2)
LT

(Eq.10)

Based on this angle, we can calculate the height of the solid itself. On the other hand, we can easily obtain it via
constructive procedures based on the 3D transformations of an equilateral triangle (Fig. 4 a).

h=§1/3—(tga)2 (Eq.11)

The constructive - geometric procedures for obtaining the height of the “flower” antiprism (hga), i.e. the heights
of the vertices A, B and C, start from the assumption that the vertices Gi, G2, H; and H; lie in the horizontal
plane at height h=0. Two of them are shown in Figure 4. We can use:
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e the method of introducing a new transformation plane (2”) in the orthogonal view, given in Fig. 4 a)
e the method of 3D rotation of the equilateral triangle’s edge (H;B) in a 3D environment, given in Fig.
4b).
With the obtained heights of the vertices A, B and C we easily form lateral triangles (Fig. 4 b), and then the

whole lateral surface, considering that the entire structure should be repeated, i.e. “mirrored”, with respect to the
horizontal plane of symmetry (Fig. 4 c).

horizontal

plane of symmetry ¢)

Figure 4: Construction of the vertex heights: (a) transformation plane method, (b) 3D rotation method (c) half of the lateral surface

With this constructive procedure we can create a “flower” antiprism for any k. Examples of several
“flower” antiprisms of minor type (FA-II-km), for initial k €{3, 4, 5, 6, 7, 8} are shown in Fig. 5. We can
observe the outlines of the 2k-sided "flower" polygons in top view, as well as the models of k-merous "flower"
antiprisms themselves in axonometric view.

Outiline of the “flower” antiprisms (minor type) in top view

“Flower™ antiprisms (minor type) in top view ji
k=3 k=4 k=5 k=7

k=6 k=8
FA-II-3m FA-11-4m FA-II-5m FA-II-6m FA-II-7Tm FA-II-8m
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Figure 5: Some representatives of “flower” antiprisms, with k €{3,4, 5, 6, 7, 8}
All the solids shown are verified through 3D models performed in AutoCAD application. In Fig. 6 a) we
see FA-II-7m as a rendered image of a 3D model, while in Fig. 6 b) we see a photograph of a physical model of

the same solid.

In this way, we prove the accuracy and feasibility of these forms.

(b)
Figure 6. An example of FA-II-7m: (a) Rendered image of a 3D model, (b) Photograph of a physical model

4. MAJORTYPE

As stated above, and according to all the previous research on concave polyhedra of the second sort
(Obradovi¢ et al.., 2008; Obradovi¢ et al.., 2013-I; Obradovi¢ et al.., 2014; Obradovic et al.., 2015), two types of
lateral surface, major and minor, can be formed from a single net of double-rowed equilateral triangles,
depending on the folding mode. The situation here will be similar to that described above. From a triangular
grid, we separate a segment corresponding to k& connected decahedral cells and thus again obtain /0-k equilateral
triangles organized in two rows. The net of the 7-merous “flower” antiprism is given in Fig.7. By folding it in
the manner that the vertices G; and G, of the unit decahedral cell are protruding into exterior, we get a minor
type of "flower" antiprism, described in the previous.

2k-sided polygon

Decahedral cell ‘\\ R )

Fig. 7: Net of the “flower” antiprism

THE 7™ ICGG CONFERENCE | MONGEOMETRIIA 2020 | PROCEEDINGS | Belgrade: 18-21 September 2020
20



M. OBRADOVIC.: GEOMETRIC PROPERTIES OF “FLOWER” CONCAVE ANTIPRISMS OF THE SECOND SORT

Now, to get the major type, we fold the net in the alternative way so that the vertices G; and G, become
indented, as viewed from the outside.

However, if we keep the same base polygon, we will find that it is not possible to obtain the equilateral
deltahedral surface, due to constructive and trigonometric paradoxes. Let us look further into this.

From Fig. 8 we can see that angle y, viewed as angle NH; A in the quadrilateral (deltoid) NH;AGy, is:

2m—p m(4k+3)

=7 "ok (Eq.12)

At the same time, this angle must satisfy the condition from the quadrilateral NH;QC, that as the angle NH;Q it
is:

3pm s 2m(k+2)

XZ:ZT[_T_Um_um_E=_5k (Eq.13)

These two values, x; and X, of the angle y, cannot be equal for any value of &, (Fig. 8 a) if the values of p,,, im
and v, are expressed as functions of n,,, because its relation to k is defined by Eq. 2, for the minor type. The
given relation does not simultancously satisfy the setting for the major type. Therefore we must look for other
value, n, and consequently all the related angles, to satisfy the above condition.

: .+ nu-sided polygon

Eal

R

a
) n-sided b)
polygon
polygon
d)

Figure 8. Starting elements for determination of FA-II-kM

Although it will not be feasible to use the same “minor” polygonal basis, we can still assemble a major
type of lateral surface out of the same net, with the same number of “petals”, and with the central vertices G
and G; being indented. Accordingly, the basic star polygon will be slightly different.

The outmost edges (AH; and DH>) of the decahedral cells must lie on the planes of symmetry (t) of the basic
star polygon, and at the same time, the vertices of the lateral triangles (Hi, A, Gi, C, G2, D and H,), projected
into vertices of the isosceles triangles, must form a 2n-sided polygon, whose 6 consecutive sides form the
contour of the major "flower" antiprism (Fig. 8 b). This means that the ny-sided polygon is determined by the
angle between the planes t, which is 2n/k.

The value of n,, is given by Eq. 14, and the value of the base angle a of the projected isosceles triangle in Eq.
15.

ny =5 kEN (Eq.14)
a, = 23 (Eq.15)

10k
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If we apply rotational symmetry on the ny-sided polygon by the angle 2n/k and with the center of the rotation in
the centroid K of the £-sided base polygon, the new arrangement of n,,-sided polygons accurately plot the sides,
“petals” of the basic 2k-sided polygon (Fig. 8 c).

The major-type of the 2k-sided polygon, now with a different ny,-sided conjugate polygon, obtains its final
appearance, given in Fig. 8 d.

The calculated values of the angles: pm, A, pas, vu, i and exr (Fig. 8 b) relevant for determining the ny,-sided and
2k-sided polygons are given by the formulas in Table 4.

Table 4: Overview of all the angles relevant for determining the 2k-sided star-like polygon (base "flower" polygon) for the major type of
“flower antiprism” FA-II-kM

Angle = fk) Equation

Pm = 2n(k —2) (Eq.16)
Sk

A = n(k —2) (Eq.17)
2k

L = n(2k + 1) (Eq.18)
Sk

Um = mw(k +3) (Eq.19)
Sk

Enm = 3n(k —2) (Eq.20)
Sk

- - n(7k - 4) (Eq.21)
Sk

Table 5 shows the relationship between numbers of sides in k-sided and n,,-sided polygons, if we assign & to be
an integer.

Table 5: Major type of FA-II-k; Interdependence of the number of sides between two conjugated polygons: k-sided and n-sided

k 3 4 7 9 10 | 11 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22
- 0 3 ¢ Q = =N 2 N = 3 g A A a A
ny | 18 10 o5 o~ 7 S S N S| 6 v - v v “ “ “ - “ “

Only in four cases are both k and n,, integers, as it is shown in Table 6. There we see that if k tends to
infinity, n,, tends to number 5, as for the minor type of “flower” antiprism, but now there are no cases when ny,
is infinite, since the condition for that is &=2, which is not possible for a polygon.

Table 6: Major type of FA-II-k — Cases when both k and n are integers

2(-)

3

4

7

12

15

10

Once again, just like for the minor type, in the first projection (top view) all the triangles from the lateral surface
are projected into congruent triangles (Fig 9 c). In this case also 3 out of 7 visible vertices of the unit cell
coincide with the vertices A, C and D of the “flower” polygon, i.e. belong to both k-sided and n,,-sided
polygons (Fig 8 b and Fig 9 a). The vertices G; and G» can also be found in the intersection of the normals of the
sides AC and CD respectively with the circle c itself, while the vertices H; and H, are found at the intersection
points of the circle ¢ and the symmetry plane (1) of the base polygon, set through the vertices A and D
respectively (Fig 9 a). The remaining 4 vertices belong to an identical but gyrated polygon to the n,,-sided one,
so one more time all the 7 vertices of the unit cell, seen in the top view, will lie on the same circle ¢, determined

by the vertices A, C, and D (Fig. 9 b).
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Decahedral

e)

Fig 9: The construction and origination of “flower” antiprism of the major type

Accordingly, another way to create the contour of a “flower” antiprism’s unit cell of the major type is to
have the polygon n,, girated. Then, with its polar array, we form the entire ring, observed in top view (Fig 9 d).
In Fig. 9 ) we can see in the final contour outlook of the lateral surface with the obtained k& (7) “petals” of the
“flower” antiprism, also in the top orthogonal view.

Next we proceed to determination of vertices’ heights in order to obtain all the necessary elements for
construction of the solid. We apply the same methods as for finding the height of the minor type, described in
the section 3.3.

It is interesting to note that the minor and major types differ not only in height and in the way the net is folded
and assembled, but also in two additional interesting details:

e the area of the major polygon is larger than that of the minor polygon,

e  surfaces whose fragments form the lateral surface of the major type of the "flower" antiprism, with
the equivalent role that CA-II-nms had in the formation of the minor type of the "flower" antiprism,
are nothing else than double convex antiprisms. In this way, the connection between convex and
concave antiprisms is confirmed again, as shown by Obradovi¢ et al (2019), but in the inverse
procedure, where double convex antiprisms occurred as a consequence of the polar arrangement of
CA-II-nm fragments.

Also, we will notice another link between the present and the previous studies: the case B of the CDR-II
(illustrated only by the example with fragments of CA-II-4ms) described in Obradovi¢ et al (2019) is nothing
but the lateral surface of the major type of “flower” antiprism, and the case A of those CDR-II-Ks is in fact the
lateral surface of the minor type.

THE 7™ ICGG CONFERENCE | MONGEOMETRIIA 2020 | PROCEEDINGS | Belgrade: 18-21 September 2020
23



M. OBRADOVIC.: GEOMETRIC PROPERTIES OF “FLOWER” CONCAVE ANTIPRISMS OF THE SECOND SORT

Outiline of the “flower” antiprisms (Major type) in top view T
“Flower” antiprisms (Major type) in top view f

FA-1I-3M FA-1I-4M FA-II-5M FA-1I-6M FA-II-TM FA-1I-8M

Figure 10. Some representatives of “flower” antiprisms, major type, with k=3 to k=8

Examples of several “flower” antiprisms of major type (FA-II-kM), for initial k €{3, 4, 5, 6, 7, 8} are
shown in Fig. 10. We can observe the outlines of the 2k-sided "flower" polygons in top view, as well as the .-
merous "flower" antiprisms themselves in top and axonometric views.

In Fig. 11 a) we see a rendered image of a 3D model of the FA-II-7M performed using AutoCAD application,
while in Fig. 11b) a photograph of the same solid’s physical model is presented.

a) b)
Fig. 11: a) Rendered the 3D model of the FA-II-7M; b) photograph of the physical model of the FA-II-7TM

Finally, comparing the basic “flower” polygons of the FA-II-km and FA-II-kM representatives, with the
same initial k-sided polygon (Fig. 12), we can observe that although they are not congruent, the divergence
between major and minor polygons decreases with increasing the number k. The minor type of the polygon is
given in red, and the major is given in black. The polygons equalize when n=35, while £ is tending to infinity.

Note: If we compared these polygons for the same triangle edge a, the differences would be even less
noticeable. Also, we will find that stellar polygons (polygrams) appear in two special cases only: for k=8 in the
minor case, where obtuse octagram {8/2} (Griinbaum, et al.., 1986) appears, and for k=7 in the major case,
where obtuse heptagram {7/2} is obtained.

In this way, the properties and measures of "flower" antiprisms of the second sort are completely defined.
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N\
N

N
k=9 k=10 k=7M k=8m
Obtusc heptagram Obtuse octagram

Fig. 12: Comparison of Major and minor representatives of FA-II-k with two special cases (k=7 for M, and k=8 for m) - polygrams

We can use these polyhedral surfaces to form infinite polyhedra, more precisely: infinite deltahedra, but
only of the same type FA-II-k, without combining the major and minor types, as it was possible with CA-II-ns.

CONCLUSIONS
Based on all the above presented in the paper, the following conclusions are drawn:

e By using unit decahedral cells made of equilateral triangles, analogously to those formed by the use
of CA-II-nM’s lateral surface fragments, we can take any integer k& of them to form a closed
deltahedral surface with multilateral k-fold symmetry.

e  We can form a solid, a "flower" concave antiprism, enclosing these annular lateral surfaces by bases
which are isotoxal concave 2k-sided star polygons.

e  These star polygons are not stellations (except in two special cases), but elevations of regular k-sided
convex polygons. This special type of isotoxal star polygon has concave angles that are conjugate to
the interior angles of an n-sided polygon, where n=f(k), and n does not have to be an integer. The
number £ indicates the number of "petals" in the "flower" antiprism itself.

e By an alternative way of folding the net of the lateral surface, we can get another type of "flower"
antiprism. If we fold the net so that its central vertices (G; and G») of the decahedral unit cells are
protruding into exterior, we get a lower height of the solid, i.e. the minor type, and if these vertices
are indented, we get a greater height of the solid, i.e. the major type. This corresponds to the way all
other concave polyhedra of the second sort are formed.

e  The bases of the major and minor types will not be congruent in this case, and the aberrations occur in
the angles of these polygons, so that the differences will disappear only when k& = o and n=35.

e  For the minor type of "flower" antiprisms, conjugate solids are concave antiprisms of the second sort
(CA-II-nM), and for the major type, the conjugate solids are double convex antiprisms.
For both the major and minor types, there are only 4 cases where both k£ and » are of an integer value,
whereupon the conjugate solids can modularly fit.

With this research, it is shown that the world of concave polyhedra of the second sort is not depleted with the
ones having convex polygons as bases, and that there is a clear relationship between concave antiprisms of the
second sort (CA-II-nM), concave “flower” antiprisms (FA-II-k) and convex antiprisms.

For the further research, one might focus on: what happens if we apply the procedure analogous to the one
described in this paper to the minor type of the concave antiprisms of the second sort, CA-II-nm, using their
fragments for obtaining deltahedral rings? What kind of rings, and “flower” antiprisms would be produced by
such an array of their fragments? In this case, even more curiosities occur. Such "flower" antiprisms might even
include regular convex polygons as their bases, which is to be explored.
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ABSTRACT

A set of the convex uniform honeycombs consists of combinations of some Platonic and Ar-
chimedean solids as well as regular octagon based prisms. The edges of these solids are parallel to
these ones of the Archimedean truncated cuboctahedron. 1t is the hull of a 3D model of the 9D cube.
Special, symmetric 3D models of the 8D and 9D cubes and those of its lower-dimensional parts
provide other sets of stones for further periodical space-filling mosaics. Subsets of these stones are
building boxes of compound models of the elements applied in the tessellations of the above initial
solids or models. The rebuilt tessellations can have fractal like structures as well.

Keywords: constructive geometry; hypercube modelling; convex uniform honey-
comb; tessellation; fractal

INTRODUCTION

The 3-dimensional framework (3-model) of any k-dimensional cube (k-cube) can be produced based on
starting k edges arranged even by rotational symmetry, whose Minkowski sum can be called zonotope [1], [3],
[4]. Combining 2<j<k edges, 3-models of j-cubes can be built, as parts of a k~cube. The suitable combinations of
these zonotope models can result in 3-dimensional space-filling mosaics. The investigated periodical tessella-
tions always hold the 3-model of the k-cube and necessary j-cubes derived from it [8]. The tessellations may be
mentioned further as mosaics and the cells as stones.

The mosaics can have fractal or fractal like structure as well, since the stones can be replaced with restructured
ones. The hulls of 3-models of k- and 3<j-cubes can be filled with different sets of 3-models of 2<j<(k-1) or
2<i<(j-1) -cubes touching each other at congruent faces [6]. Another possibility is if the 3-models of the given k-
and of the derived j-cubes are arranged along the outer edges of the restructured models and the faces are re-
placed with central symmetrically arranged sets of the above elements. The inner spaces of the new compound
models are filled also with the initial models. The elements can have different colours and different tones of
these according to their shape and role like edge, face and inner elements [11].

If also the inner edges are followed by 3-models of the k- and j-cubes [10], the construction can require unman-
ageable quantity of the elements, from practical points of view, but the restructured mosaics can have a more
consequent fractal like structure. The intersections of the mosaics with planes allow unlimited possibilities to
produce periodical symmetric plane-tiling. Moving intersection planes result in series of tessellations or grid-
patterns transforming into each other. These can be shown in varied animations [8], [9]. This contribution deals
partly with these possibilities based on compound 3D models of the 8D and 9D cubes.

A set of the convex uniform honeycombs consists of combinations of some Platonic and Archimedean solids as
well as regular octagon based prisms [2]. The edges of these solids are parallel to these ones of the Archimedean
truncated cuboctahedron (4;6;8). It is the hull of a 3D model of the 9D cube [6]. The affine pairs of the above
solids can have compound models if the edges are replaced with sequences of the rotational symmetric 3D mod-
el of the 8D cube and its derived parts. The inner spaces of the models are filled with the same stones that are
applied in the former compound rotational symmetric model of the 8D and the 9D cube [12]. The new space-
filling mosaics have only two different unit parts if the stones are coloured only according to their different
shapes.
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2. OPERATIONS BASED ON 3D MODELS OF THE 8D AND 9D CUBES

2.1. Centrally and Rotation Symmetric Models

The initial edges of the 3-model of the 8-cube are arranged rotation symmetrically around an axis. The
directions of parallel shifts of model elements are defined by these edges. So the model will be rotation and
centrally symmetric (Figure 1(a)). It has inner coinciding vertices and edges intersecting each other between
their endpoints (Figure 1(b)). The faces have four different rhombic shapes. The models of lower-dimensional
parts of the cubes can be constructed by combinations of the initial edges. All models can touch each other at
congruent faces. A 3-model of the 9-cube can be derived from the above one if the ninth initial edge is a seg-
ment of the rotation axis (red line in Figure 3(a)).

(a) (b)

Figure 1: (a) The central and rotation symmetric 3D model of the 8D cube in front and top views (b) Intersections of the inner edges

2.2. Compound Models

A sequence of the above models of the 8-cube and 3-models of its lower dimensional parts can substitute
for all edges of the whole compound model. According to the introduced example, the endpoints and the inter-
section points of the edges have to be centre points of 8-cube models that ensure the junctions in all possible
directions. There are placed 3-models of 4-cubes among these elements as well as an 8-cube model at the mid-
points of the segments among the intersection points (Figure 2). A sequence consists of 31 elements. All outer
and inner edges of the whole model need almost 30 thousand elements. Together with the compound faces and
inner spaces, filled with 3-models of the 8-cube and of the needed j-cubes, the model requires an unmanageable
amount of the elements, from practical points of view.

(a) (b
Figure 2: (a) The construction of the model sequence along the edges of the compound
3D model of the 8D cube (b) Some intersecting inner edges of this compound model
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A limited solution can be if only the outer edges and faces have compound models and the inner space is filled
with 3-models of the 8-cube and of needed j-cubes. These models are called further compound models. The
layout of the compound edge is defined by the next rules. The sequence of edge elements has to be centrally
symmetric to the midpoint of the edge and must have a symmetry plane consisting of the initial edge (Figure
3(a)). The four differently shaped rhombic faces of the compound 8-cube model have to be reconstructed with
central symmetrically arranged sets of stones around the centre points of the faces (Fig. 3 (b)). The layout of the
edges and of the differently shaped faces, joining the hulls of 3D models of the 8D and 9D cubes, can be seen in
Figure 4. The net of the compound outer edges consists of 788 elements between the pairs of 54 vertex solids.
The whole filled model is built up with 36-37 thousand elements (Fig. 5(a)). The compound model of the 9-cube
requires an additional vertical edge with a sequence of initial 3-models of 8-cubes (Fig. 3(a)). This way it needs
the same set of stones like the above model of the 8-cube. These compound models consist of the initial 3-model
of the 8-cube and of 9 derived j-cubes as building stones (Fig. 5(b)). There is the same angle between the 8§
neighbour initial strait line edges. The notation of the j-cubes shows the multiplication of this angle between the
initial edges needed for the construction of these stones (Fig. 5(c)) that can have different colours and different
tones of these according to their shape and role like edge, face and inner elements (Fig. 5(c)).

The 3-model of the 8-cube and of each j-cube can be rebuilt with the above compound edges and faces and with
the filling stones shown in Figure 5(b). However some stones of faces of thin initial j-cube models can require
modifications. The 3-models of - and j-cubes can be replaced also with sets of j- and <j-cubes [5]. This opera-
tion can be solved here with the stones of the compound model and the stones of penetrated parts are omitted.
The initial 3-models of the 8-cube and its j-cubes as well as the mosaics built with these can be rebuilt with the
compound models and the stones of these can be rebuilt again and again. This way the new constructions will
have fractal like structure. It will be more consistent if the initial set of stones is equal to this one used for the
compound models. More about it can be read in section 4.

-
-

AL g

(@) (b)
Figure 3: (a) Sequences of the initial models along the edges of the limited compound 3D model of the 8D and 9D cubes (b) The structure
of the compound, centrally symmetric faces of the limited compound 3D model of the 8D cube in front and side views

Figure 4: Centrally symmetric compound models of the edges and of the differently shaped faces
joining the hulls of 3D models of the 8D and 9D cubes
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Figure 5: (a) The half part of the symmetric whole compound model and the hull of the initial model of the 8D cube (b) The differently
shaped elements needed for the filled models of the 8D and 9D cubes (c) The elements can be coloured according to their roles as well.

All fourth layers of all compound models have a horizontal symmetry plane and use the same set of stones hav-
ing a horizontal and more vertical symmetry planes. Figures 6(a) and 6(b) show all these layers of the half part
of the compound model of the 8-cube. The first one is on the middle level, the other ones are mirrored to this
one inside of the whole model. This layer has congruent pairs placed on higher and lower neighbour levels in-
side of the compound 3-model of the 9-cube. The central parts of all these layers are mirrored into the higher
one. The border parts are then completed according to the surrounding faces. Unit, prism shaped parts can be
found between two accidently chosen layers (Figures 6(b), 7 and 8). These can create larger compound unit
parts as well (Figures 9 and 10).

Figure 6(a): Layers of stones having a horizontal symmetry plane inside of the half part of the compound 3-model of the 8D and 9D cube.
These are mirrored to the level plane of the first, i.e. middle level layer inside of the whole models.
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Figure 6(b): Layers of stones having a horizontal symmetry plane inside of the half part of the compound 3-model of the 8D and 9D cube.

Figure 7: An accidently chosen pair of plane symmetric layers of stones and the common border of repeatable parts.

A3 33

Figure 8: Construction of the honeycomb based on the above layers of stones (axonometric projection and top view)

THE 7™ ICGG CONFERENCE | MONGEOMETRIIA 2020 | PROCEEDINGS | Belgrade: 18-21 September 2020
31



L. VOROS: SETS OF TESSELLATIONS BASED ON 3D MODELS OF HYPER CUBES AND CONVEX UNIFORM HONEYCOMBS

Figure 9: Construction of a compound unit part of the new spatial mosaic built up with the above honeycomb

Figure 10: The front view of the above compound unit part

Ak A
4400

Figure 11: Nine tessellations gained as equidistant horizontal sections of the above compound unit part of a periodical space-filling mosaic

The intersections of the mosaics with planes allow unlimited possibilities to produce periodical symmetric
plane-tiling. Moved intersection planes result in series of tessellations or grid-patterns transforming into each
other (Figure 11). These can be shown in varied animations [9].

The unit mosaics and the compound ones can be mirrored to horizontal and vertical planes bearing the border
stones. New space-filling periodical mosaics can be constructed this way. The above method is applicable also
for all former mentioned tessellations derived from the introduced initial and compound 3-models of the 8D and
9D cubes. In section 4 are described other possibilities to create further tessellations based on these models.
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3. OPERATIONS BASED ON A 3D MODEL OF THE 8D CUBE AND ON A SET OF CONVEX
UNIFORM HONEYCOMBS

The 3-model of the 8-cube and of its j-cubes are the same like this ones applied as stones of the compound
models described in the former section 2. The uniform convex honeycombs of Platonic and Archimedean solids
consist of the cube, i.e. Platonic hexahedron, and the solids shown in Figure 12. Their edges are parallel to the 9
differently oriented edges of the solid (4;6;8). It is true also to the right prisms having regular octagon base face
oriented horizontally or vertically.

3.1. Compound Models of the Elements of the Considered Honeycombs

The compound models of the affine pairs of these considered solids can be constructed based on the com-
pound edge models (Figure 13(a)). Two examples of the compound solid models are showed in Figure 14. All
compound models consist of the 3-models of the 8-cube and of 7 derived j-cubes (Figure 13(b)). The stones
have different colours and different tones of these depending on shape and role, given in Figure 5(c).

The edges of the 3-cube have 3 different orientations. Our first set [group 3] has only 1 element but, because of
the above modifications, the bearing solid of the compound model of the cube has 2 different shapes. Thus the
modified set is called [group 3]’ and has 2 elements. In Figure 15, are given their compound models and devia-
tions of edge lengths in % and of angles in degrees, related to the regular cube. These can illustrate the devia-
tions regarding the considered Platonic and Archimedean solids and their affine pairs as well that give the base
of the compound models. The edges of members of the next set of Platonic and Archimedean solids have 6
different spatial orientations: (3;3;3), (3;3;3;3), (3:;4;3;4), (3;6;6), (4;6;6). This set is called here as [group 6] and
the set of the modified solids as [group 6]’. It has 5 elements, like [group 6] (Figure 12(a)). The edges of the
next polyhedrons have 9 different orientations, 3+6 of the above edges: (3;4;4;4), (3;8;8), (4;6;8). This set is
called [group 9] shown in Figure 12(b) and has 3 elements like [group 9] as well.

(@) (b)

Figure 12: Platonic and Archimedean solids, elements of the considered convex uniform honeycombs (a) [group 6] (b) [group 9]

g, 2

(@) (b

Figure 13: (a) The construction of the 9 compound edges (b) All compound models consist of this set of the initial models.

THE 7™ ICGG CONFERENCE | MONGEOMETRIIA 2020 | PROCEEDINGS | Belgrade: 18-21 September 2020
33



L. VOROS: SETS OF TESSELLATIONS BASED ON 3D MODELS OF HYPER CUBES AND CONVEX UNIFORM HONEYCOMBS

Figure 14: The filled compound 3-models of the Archimedean solids: truncated octahedron (4;6;6), 16117 stones

and truncated cuboctahedron (4;6;8), 29826 stones

o, Ls)
8.4% 1.5%
(b)
Figure 15: (a) The compound models of the affine pairs of the cube oriented in two different ways. (b) Their bearing solids
can illustrate the deviations regarding the considered Platonic and Archimedean solids (dark grey) and their affine pairs (light grey).

0.83°

The inner spaces of all compound models are filled with layers of stones chosen from the used set of elements.
Figure 16 shows the construction steps from the first horizontally symmetric layer up to the second one in the
compound model of the Archimedean solid (4;6;8). The structure of the layers in all models is equal to this one
of the above compound models introduced in section 2. So the method of construction of new tessellations,
described there and illustrated in Figure 6 up to Figure 11, is applicable based on these models as well.

It is possible to construct periodical space-filling mosaics based on the convex uniform honeycombs. Its rectan-
gular unit parts can be replaced with their affine pairs cut out from the appropriate combinations of solids, bear-
ing the compound models of the considered initial solids. These are the repeated parts of the new tessellations
using the stones derived from the 3-model of the 8-cube introduced in Figure 1. The key of the notation in Fig-
ure 17: P=Platonic, A=Archimedean, h=regular octagon based right prism, the digits denote the set of regular
polygon faces joining the vertices of the given solid.

Figure 18 shows the structure of a mosaic, chosen as an example, and the compound models of the applied Pla-
tonic solids, (3;3;3) and (3;3;3;3). The compound model of the rectangular unit part of the initial mosaic can be
seen in Figure 19 in axonometric projection and in front view with horizontal symmetry planes. Figure 20 shows
plane-tiling patterns cut out from the above unit mosaic, here by five equidistant planes. The first and the fifth
ones are adjacent symmetry planes. These patterns, further called paired patterns, define exactly the spatial
structure of this part of the tessellation, knowing the above introduced construction steps and the common prop-
erties of the considered compound mosaics if the stones are coloured only according to their shape.
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Figure 16: The inner spaces of all compound models are filled with layers of stones chosen from the used set of elements.

Figure 17(a): The structure of the space-filling mosaics of the considered convex uniform honeycombs and their rectangular unit parts
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Figure 17(b): The structure of the space-filling mosaics of the considered convex uniform honeycombs and their rectangular unit parts
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Figure 18: The structure of a mosaic, chosen as an example, and the compound models of the applied Platonic solids

0‘

(a)
Figure 19: (a) The compound model of the rectangular unit part of the above mosaic.
(b) The model in front view with horizontal symmetry planes.

Figure 20: Plane-tiling patterns cut out from the above unit mosaic in five steps between two adjacent symmetry planes

In section 4 are described other possibilities to create further tessellations based on the initial 3-model of the
8-cube and on these compound 3-models of the considered solids.

3.2. The Base Structure of the Obtained Tessellations

The tessellations of the above defined paired patterns of the compound models of all rectangular unit mo-
saics, depicted in Figure 17, can be divided into congruent triangular and rectangular parts. These are arranged
again in different patterns according to the used sets of the bearing solids of compound models that build up a
given mosaic (Figure 21). These solids are the affine pairs of Platonic and Archimedean solids as well as of a
regular octagon based right prism as it is described above. The key of the notation for Figure 21: the first digit
gives the highest number of differently oriented solid edges, P=Platonic, A=Archimedean initial solid, h= prism
with horizontal base face, v= prism with vertical base face, s= cube with sloped faces, the groups of digits de-
note the set of regular polygon faces joining the vertices of the given solid.
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The compound mosaics based on the elements of [group 3]’ define the congruent triangular T and rectangular R
parts of the paired patterns. These parts are bordered by yellow lines in Figure 21. The same combination of T is
repeated inside of the paired patterns of the spatial mosaic based on P444 and in tessellations of patterns based
on the spatial mosaics consisting of the elements of [group 6]’ only. Seven combinations of T and R give the
tessellations of paired patterns of compound mosaics based on sets of bearing solids consisting of one of the
elements of [group 9]’ at least. In Figures 21 (c) up to (h), the grey lines show the borders of the repeated pat-
terns and these tessellations are divided into the above determined triangle and rectangle shaped unit patterns by
the yellow lines. Their combinations consist of some common larger parts as well. The net of bordering lines of
T and R parts can be drawn in all plane-tiling patterns cut out from the given compound mosaic by other hori-
zontal planes as well. The following spatial analysis lead to the definition of the two smallest unit parts needed
to build up the tessellations of the compound models of the considered solids.

(e () (€3] (h)

Figure 21: The patterns defining the compound models of the above rectangular unit mosaics can be divided into congruent triangular and
rectangular parts. These are arranged again in different patterns according to the used sets of the bearing solids in a compound mosaic.
(a) 3P444 (b) 3P444s (c) 9h448v448A468 (d) 9h448v448P444A3444A388
(e) 9P333P444A3444 & 9P3333A388 (f) 9A366A388A468 (g) 9P444P444sA466A468 (h) 9P444P444sA3434A3444
The pattern (a) is repeated in tessellations of patterns based on the elements of [group 6]’.
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The investigation of the above described structures, helped by the paired patterns as well, show that only two
different unit mosaics or their plane or centrally symmetric pairs are needed to build two compound prisms
(Figure 22) that give periodical space-filling mosaics in different arrangements, not only those that are described
in this section. The used stones are derived from the special 3D model of the 8D cube described in the introduc-
tion and in section 2. The above unit mosaics can be cut with border and symmetry planes of the bearing solids
of the compound prisms (Figure 23). These can be divided into further triangle as well as rectangle based unit
parts. The cutting vertical planes are marked with axis lines in top view in Figure 23. The finally defined unit
parts are the smallest ones that build up all compound mosaics introduced in this section. These parts and their
symmetric pairs are depicted in ordered front, left side and top views as well as in axonometric projection in

Figures 24 and 25.

Figure 22: The above mosaics can be built up with two different compound prisms (front view).
Only two different unit mosaics or their plane or centrally symmetric pairs are repeated along the axes of these prisms.

diddd

Figure 23: The above unit mosaics cut with border and symmetry planes of the bearing solids of the compound prisms (top view).
These can be divided into the smallest, triangle as well as rectangle based unit parts of all compound mosaics described in this section.

mgg == g9

Figure 24: The smallest, triangle based unit part and its symmetric pair in front, left side and top views as well as in axonometric projection.
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Fig. 25: The smallest, rectangle based unit part and its symmetric pair in front, left side and top views as well as in axonometric projection.

4. ON THE SPATIAL TESSELLATIONS AND FRACTAL LIKE STRUCTURES

This section summarises the process of the already introduced tessellations and describes further possibili-
ties to create more complex ones having fractal like structures as well.

Let’s call the set of initial 3-models of the 8-cube and of its j-cubes, described in section 2, iM8. Its subset is
used to construct compound 3-models of the elements of iM8. It can be called siM8 (Figure 5(b)). The set of the
compound models will be called ¢M8. In case of the 9-cube, the notation can be iM9 and ¢cM9. (The set iM9
consists of iM8. Its further elements are derived from the elements of iM8, using one additional initial edge
(Figure 3(a)) in order to the modelling.) The construction of the elements of ¢cM9 needs also siM8. The bearing
solids of ¢cM8 and ¢M9 are affine pairs of the elements of iM8 and iM9, these can be called aM8 and aM9. So
the cells of all possible tessellations of iM8 or iM9 elements can be changed to aM8 or aM9 elements. The
application of cM8 as well as ¢cM9 elements instead of aM8 or aM9 elements results in a mosaic ¢cM8 as well as
¢M9 stones. This process can be repeated. A fractal like structure can be obtained by colouring of the stones
according to their shapes and roles. It will be more consequent if the stones used in the first step are siM8 ele-
ments. The modifications because of penetrations, mentioned in section 2, are avoidable if the notations of the
initial 3-models dose not consist of a digit 1 (Figure 5(c), because in that case the compound model of the acute
angled rhombic face needs the j-cube k8j04-1115 (Figure 3(b)). The initial construction steps of a very simple
example for a more consequent fractal like tessellation, using the j-cube k8j04-2222 only, can be seen in Figure
26. The structure of the introduced unit part of the tessellation and the layout of its iM8 elements are depicted in
Figures 27, 28 and 29 coloured according to the shapes of the stones.

The set of the solids, applied in the considered convex uniform honeycombs, is called iC9 following the above
way of notation. The construction of the compound models, elements of ¢C9, needs a subset of siM8. It is called
ciM8 (Figure 13(b)). The name of the set of the bearing solids of ¢C9 elements is aC9. The set aC9 can substi-
tute for iC9 because the faces of their elements are affine pairs of each other. Using ¢C9 elements instead of
aC9 ones, are created the compound pairs of tessellations of iC9 elements and the unit parts introduced in sec-
tion 3. The applied ciM8 elements can be changed to ¢M8 models and this step can be repeated as it is described
above. This process needs already the local modifications because of penetrations. The new, more compound
unit parts can be varied in order to get more complex periodical space-filling mosaics. The different structures
inside of these tessellations can be shown again by colouring of the elements.
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(a) (®)
Figure 26: (a) The compound model of the j-cube k8j04-2222 in front and top views (b) The construction of a unit part of the aM8 models

(a) (b)
Figure 27: (a) The compound model of the above rectangular unit part of the periodical space-filling mosaic.
(b) The layout of the iM8 models k8j08 and k8j06-112112 inside of the compound unit mosaic in axonometric projection.

Figure 29: The layout of the iM8 models k8j04-1313 and k8j03-223 inside of the unit part
of the periodical space-filling mosaic, in axonometric projections and in top views.
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5. CONCLUDING REMARKS

The investigation of the base structure of the above introduced more complex tessellations requires the
application of further possible features of the used computer and CAD program. Similar but not so detailed
description regarding the 5D and 6D cubes is given already by the author in [7]. It deals especially with the
helical structure of the considered tessellations that can be discovered also in the here studied constructions. All
of these investigations could be extended to other hypercube models as well.

The creation of the constructions and figures required for this topic was aided by the AutoCAD program as well
as by AutoLisp routines developed by the author.
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ABSTRACT

In this work, pencils of conics are mapped into pencils of curves of the higher orders, using
supersymmetry. A Model of basic transformation for mapping of dots (inversion) is shown graphically
and using equation as well. The conics were mapped using a chain of inversions where the order of
obtained curves was being doubled. The inversion was interpreted in two ways: as quadratic
transformation in the classical projective geometry and as pure symmetry in the relativistic geometry.
The recognition of the equivalence between inversion and harmonic symmetry has created numerous
possibilities for mapping curves and obtaining new forms. Two types of pencils of conics which have
not been mapped before are mapped in this work. Research studies in the field of enlarged symmetries
offer inexhaustible space for further discoveries about plain and spatial forms. Obtained results will
be of use in the theory of geometry and in the practice of architecture.

The mapping model was used to create the Lisp routine, which was then used in the AutoCAD
software, for the purposes of computer drawing of pencils of conics and equivalent pencils of curves
of the higher order. The order and the shape of the obtained curves depend on where the center of
inversion has been constructed related to the base points of the pencil of conics. It is shown that the
obtained pencils of curves intersect at the same number of base points as the original pencils of
conics.

Keywords: inversion; supersymmetry; pencils of conics, pencils of curves of the higher
orders

INTRODUCTION

In relativistic geometry, the basic terms “straight line” and “plane” are replaced with the terms “circle” and

“sphere” where the size of the sphere does not affect the generality of conclusions. It also introduces a new term
“observer” (hence the term “relativistic geometry”). Perception and interpretation of geometric elements are based
solely on the observer’s position. Through the observer’s standing point on the “plane”, a pencil of his “straight”
geodesics cuts through. Every single one of these biggest circles on the sphere defines a pencil of “straight lines”
that are parallel to them but are not geodesics. By moving away from the geodesics on both sides, the diameter of
the circles decreases. For each direction in the antipode, there is one infinitesimal circle. Thus, we come to an
unusual conclusion: Unlike the projective plane which has only one infinitely distant straight line for all observers,
the relativistic “plane” has infinitely many infinitesimal antipodal “straight lines” for each (of o) observer
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individually. However strange it may be, this fact paves the way for creating a simple mechanism for the
construction and deconstruction of singular points of curves.

In relativistic geometry, curves are classified into harmonic groups. All curves belonging to the same group are
symmetrical to each other and the initial curve, but they can be of a different order. Symmetry in the “plane” can
also be performed spatially. As all characteristics of one curve isomorphically transfer to another curve, it becomes
certain that the classification of curves into harmonic groups is the way to achieve their comprehensive
classification. While the curves in the most classical group of conic sections (ellipse, parabola, and hyperbola)
belong to the same order but differ in many other aspects, the curves of the same relativistic group of mutually
harmonically-symmetric curves differ only in shape, while they have everything else in common. The
classification of curves into harmonic groups is of great value. If we determine that a curve belongs to a certain
group, we can, according to the law of symmetry, apply to that curve everything that we already know about the
most typical member of that group.

In relativistic geometry, the “straight line” and circle are second-order curves because a “straight line” is a circle
passing through the observer’s antipodal point. If a classical second-order curve has two asymptotes, it passes
through the antipode twice and has a double point in it, which makes it a fourth-order curve in relativistic
geometry. The curves of the third order pass through the antipode once and consequently, one order is added to
them, while the curves of the classical fourth-order (one-part and two-part curves) remain the same order. The
curves to which the rule doesn’t apply are Newton’s diverging cubic parabola (it is of the classical third order, but
has one isolated double point and passes through the antipodal point once, therefore in relativistic geometry the
order increases by three) and Menger’s folium (Karl Menger, 1902-1985), an oval of the classical fourth order
that inverted becomes a sixth-order curve). Thus, when mapped, they turn into sixth-order curves. It is important
to emphasize that after the regrouping, they are all curves of the even order. (Dovnikovi¢ L., 2010).

The explanation begins with mapping a straight line as a curve of n=/ order. A straight line can be mapped into
itself if the center of harmonic symmetry is on the straight line itself because in that case, the straight line is the
mapping ray. If the center of harmonic symmetry is outside the straight line, it is mapped into a curve of 2n order,
i.e., a circle. By further harmonic symmetry of the circle, i.e., the curve of 2n order, where the center of mapping
is on the circle, we obtain a straight line, i.e., a curve of 2n/2 order. If the center of harmonic symmetry is outside
the circle, i.e., outside the curve of 2n order, the curve is mapped into a curve of the same order, i.e., a circle. This
means that the order of the mapped curve can be maximally doubled by harmonic symmetry.

Quadratic transformations map a rational plane curve of n order from one field of points into a rational plane curve
of 2n order. The relativistic geometry of harmonic equivalents replaces the basic elements of projective space
with the concepts of a circle and sphere, introducing the concept of relativity when considering shapes. The
analysis and understanding of the spatial essence of the perspective quadratic transformation indicate the transition
of this transformation into a central inversion on the sphere as a harmonic symmetry. This bijective transformation
is performed by polarity which pairs points involuntarily and harmonically (hence the name harmonic symmetry)
relative to the absolute while maintaining the invariance of the mapped angles. Namely, a plane curve of # order,
depending on the position of the center of harmonic symmetry (the center can be on the curve or beyond it), can
be mapped into a curve of n, 2n-1, or 2n order in the second field.

Conics are circular curves because they can be obtained as intersections of pairs of circles. The points of an ellipse
are determined as the intersection of a pair of associated circles with centers in the foci of the ellipse and the sum
of the radii equal to the major axis of the ellipse. In a hyperbola, the centers of circles are also in its foci, but now
the difference in radii equals the real axis of the hyperbola. In relativistic geometry, a conic is a fourth-order curve
because it is “added” a double point that is in the antipode since the ellipse is obtained as an intersection of a
sphere and the elliptical cylinder that touches the sphere in the antipode. Thus, the spatial curve of the fourth order
is “disintegrated” into a spatial curve and an isolated double point at which the intersecting quadrics touch. Only
if the isolated double point is in the antipode, will the observer see this curve as a conic. If the observer moves to
another point on the sphere, he will see the intersection curve as a fourth-order curve with an isolated double point.
A circle is obtained as an intersection of a sphere and a horizontal “plane”, which is also a sphere in relativistic
geometry. Thus we can conclude that a circle also has a double point, but it is a circular point where two spheres
touch (these are the same points in the “plane” and on the sphere).

Professor Lazar Dovnikovi¢ has made a great contribution to the study of curves.

Figure 1 shows mappings of the points M and N by perspective collineation, inversion and axial symmetry for the
center S and the circular axis s (by supersymmetry).

In Figure 1, we can see the way singular points are created by perspective collineation, by mapping the plane (1)
into the plane (2). If the circle we map touches the vanishing line u; = v», it maps into a parabola. If it intersects
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the vanishing line, it maps into a hyperbola, and if it touches it, it maps into a parabola. Homology is centrally
symmetric. The vanishing lines u#; = v, overlap exactly at the midpoint of the vertical distance between S and the
planes 1 and 2. This is shown in the frontal view as a semicircle. The point M, is mapped into the point M» by
perspective collineation, which can be seen in the same view. Looking at the base of Figure 2, we can further see
that point M»” maps into point M, by inversion (S, s;), and point M;’ into M, by the same inversion. Figure 2
shows that the same points M; and M> can be obtained by supersymmetry with the same center S and the circular
axis s that is twice smaller than the axis ss. In order to map the point M; to M» by supersymmetry, M is connected
to the center S whereby we obtain the center of the circle that is marked red “c” in the drawing. By mapping the
point M; by the red semicircle, we obtain the point M, by supersymmetry. This figure is, in fact, proof that
inversion (S, s;) can be replaced by supersymmetry relative to the center S and the circular axis s. This fact greatly
simplifies the mapping of curves because simple symmetrical transferring of points relative to the circular axis
“s” enables us to obtain the point M, from the point M;. The figure also shows the mapping of another point N;
to the point No.

Figure. 2: Mapping of points by supersymmetry relative to the center C and the circular axis s
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These are the equations for the coordinates of the mapped point P (x, ), if the point to be mapped is P (x, y):

2

— drx

X=—F—>5-X (Eq.1)
X +y

— drx

y=— yz_y (Eq.2)
X +y

A graphical model for mapping points by supersymmetry relative to the center S and the circular axis s is given
in Fig. 2.

2. MAPPING OF PENCILS OF CONICS BY SUPERSYMMETRY

There are Lisp programs for drawing conics from pencils. The final result is a polyline (hyperbola, parabola,
and ellipse). A step of 0.5mm is set so that the conics have the required smoothness. In this paper, elliptic-elliptic
(EE) and parabolic-elliptic (PE) pencils of conics are mapped by supersymmetry. In Figure 4, an EE pencil of
conics is mapped by symmetry for the center S and the circular axis s;». In the EE pencil, the conics intersect at
two pairs of conjugate imaginary points. The pencil of conics is drawn in blue and the marked curves are:
hyperbola - h;, parabola - p,, and ellipse - e;. The center of supersymmetry is placed at the vertex point of the
hyperbola so that the hyperbola is mapped into a curve of the eighth order (h;s).

The pencil of the mapped curves has the same number and type of intersecting points as the initial EE pencil of
conics, two pairs of conjugated imaginary points. In relativistic geometry, a hyperbola is a fourth-order curve.
The classical order of a hyperbola (2) is increased by the number of passes through the antipode, which is 24 for
the hyperbola (the order is 2 + 24). The mapping of a hyperbola (h) from a pencil by symmetry for the center S
and the circular axis si» into a curve of the eighth order (hs) is shown in Figure 5. The double point in the antipodal
center of symmetry is common to both curves and, therefore, their corresponding asymptotes are parallel.

Figure. 3: An EE pencil of conics mapped by symmetry with the center S and the circular axis s
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Since v cuts and touches the hyperbola, a fourfold point is composed of an H-point (node) and a P-point (cusp).
The total orders of the two curves are related in the following way: n; = n; — m;s+ mys, which means that the
order of the starting curve decreases by the n-foldness of its (eventual) point in S (which is untied or if it is a single
point, it is just displaced from S) and increases by the n-foldness of the new point generated in S. Since the “straight
line” and circle are equivalent curves of the second order, they intersect the conic and its equivalent curves of the
fourth order at the same number of points, i.e., four, which means that the n-foldness of the newly-created point
always equals the order of the initial curve decreased by the number of its passes through S (because these points
do not create the new singular point). The curve of the eight order (marked in black 6+2*) is mapped by inversion
(Si, s) into the curve of the twelfth order (marked in red) with a 6-fold point in the point S. The fourfold point in
the node S, together with the points 5; and 6,, constricts the vanishing circle v; into a 6-fold point at Si. The double
point at S* of the curve hs is decomposed into ordinary points of the curve hipy.

The curve of the twelfth order (the red curve marked with number 1) is mapped into a curve of the sixteenth order
by supersymmetry for the center S and the circular axis s, (Figure 5). The blue curve marked with number 2 has
an eightfold point in S. An eightfold point in S has two cusps, two nodes, and one isolated double point (of a pair
of conjugate imaginary points). The beauty and abundance of the shape of the mapped curves can be seen in the
three examples with variable radius and position of the circle si».

The pencil of curves of the eighth order created by mapping the PE pencil of conics is given in Figure 6. The
resulting pencil of curves of the eighth order intersects in the same number of base points as the starting pencil of
conics, i.e., two real overlapping and two conjugate imaginary points.

The curves in the pencil are marked in blue. The hyperbola (h) is mapped into the curve hs with a fourfold point
in S (the curve is coloured red). The parabola (p) is mapped into the curve that is colored green and marked with
ps- The ellipse (e) is mapped by supersymmetry in the cyclamen coloured curve marked with e;.

Figure. 4: Symmetry mapping of a hyperbola for the center S and the circular axis s, into a curve of the eight order and its inversion into a
curve of the twelfth order (Si, s)
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Figure. 5: Three examples of mapping a twelfth-order curve into a sixteen-order curve using symmetry for the center S and the
circular axis s,

Figure. 6: PE pencil of conics mapped by symmetry for the center S and the circular axis s

2.1. CONCLUSION

This article proves that different classical constructions of “different” curves can be replaced by one
conformal symmetry (inversion), by which a whole set of its conformally equivalent forms can be produced from
one conic. Different types of symmetry of pencils of conics, both conformal (axial and central) and nonconformal
(central-axial, i.e., polarity), as well as their transformations into corresponding harmonic symmetries for
equivalent higher-order curves were also analyzed. It is shown how a specific construction of a curve is transferred
to its equivalents by symmetry.
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While classical inversion as a quadratic transformation is neither completely bijective (three lines are mapped into
three points, and vice versa) nor completely conformal because it connects or disconnects singular points,
relativistic inversion is, as pure symmetry, completely bijective and conformal. Thus it provides not only an
incomparably simpler mapping but also a completely consistent and graphically precise transformation.
Consequently, there is no doubt that a comparison between classical and relativistic geometry will always give
the preference to the latter.

AutoCAD was used to draw pencils of conics, as well as their harmonic equivalents. Visual LISP was used to
write a program for drawing conics and mapping second-order curves into higher-order curves.
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ABSTRACT

Pliicker’s conoid € also known under the name cylindroid, is a ruled surface of degree three
with a finite double line and a director line at infinity. The following two properties of € play a
major role in the geometric literature:

The bisector of two skew lines ¢y, €5 in the Euclidean 3-space, i.e., the locus of points at equal
distance to £; and {5, is an orthogonal hyperbolic paraboloid F All generators of & are axes of
one-sheeted hyperboloids of revolution J which pass through €; and ;. Conversely, the locus of
pairs of skew lines €4, {2 for which a given orthogonal hyperbolic paraboloid Zis the bisector, is a
Pliicker conoid €

In spatial kinematics, Pliicker’s conoid €is well-known as the locus of axes ;7 of the relative
screw motion for two wheels which rotate about fixed skew axes £; and €, with constant velocities.
The axodes of the relative screw motion are one-sheeted hyperboloids of revolution J#;, J with
mutual contact along €;5. The common surface normals along €, form an orthogonal hyperboloid
paraboloid P passing through the axes £; and €.

The underlying paper aims to discuss these two main properties. It seems that there is no close
relation between them though both deal with Pliicker’s conoid, orthogonal hyperbolic paraboloids,
and hyperboloids of revolution — however in different ways.

Keywords: Pliicker’s conoid; cylindroids; bisector; one-sheeted hyperboloid of
revolution; orthogonal hyperbolic paraboloid

1. PLUCKER’S CONOID
Pliicker’s conoid €, also known under the name cylindroid, is a ruled surface of degree three with a finite double
line and a director line at infinity. Using cylinder coordinates (7, ¢, z), the conoid can be given by

z=csin 2¢ (D

with a constant ¢ € R_. All generators of € are parallel to the [x,y]-plane. The z-axis is the double line of € and

an axis of symmetry. The conoid passes through the x- and y-axis. These two lines can be called central
generators of € since both are axes of symmetry of €, too. The Pliicker conoid € is the trajectory of the x-axis
under a motion composed from a rotation about the z-axis and a harmonic oscillation with double frequency
along the z-axis (Wunderlich, 1967, p. 37).

The substitution x = r cos ¢ and y = r sin ¢ in (1) yields the Cartesian equation
*+y*)z-2cxy=0, )

which reveals that reflections in the planes x + y = 0 map € onto itself. The origin O is called the center of €.
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The right cylinder x* + y* = R? intersects the Pliicker conoid € along a curve €., of degree 4! (see Fig. 1, left),

which in the cylinder’s development (in the [§,n]-plane with § = Rp and n = z ) appears as the Sine-curve

.2
n=c s1n—§7 0<E<L2Rm
R
with amplitude ¢ and wavelength Rm. The generators of € connect points ¢, which are symmetric with respect

to (henceforth abbreviated as w.r.t.) the z-axis. The conoid is bounded by the planes z = t¢, which contact €
along the torsal generators ¢; and #, in the planes x £+ y = 0. We call 2¢ the width of the conoid.

The tangent plane Ty, at any point X € €, X¢ 1,,f,, with position vector

x(r,) = (r cos @, r sin @, ¢ sin 2¢), where r> 0, 3)

is orthogonal to the vector product x, xx  of the partial derivates

¢

cos @ —rsin@
X . X
X, =—=| sin@ and X(P=d—= 7 COS @
g 0 M 2¢cos2¢p

This yields the equation

Txje: 2¢ 0820 (xsin@—ycos @) +rz=rcsin2¢. @)

The tangent plane Ty, has a 45°-inclination against the [x,y]-plane if 7 or — equals the distribution parameter
) ::E =2ccos20
do

of the generator through X.
For points X € € outside the torsal generators, the intersection ty,, M€ splits into the generator g, through X

and an ellipse e, with principal vertices on the torsal generators and the minor axis in the [x,y]-plane (Fig. 1,

left). After orthogonal projection into the [x,y]-plane, the ellipse appears as the circle eX' (see Fig. 1, right)
satisfying

cos 2¢ (x* +y*) + r (y sin ¢ —x cos ¢) = 0,
hence

2 . 2 2
poLeose V[, rsing | r2 if cos2¢#0.
20820 2¢0s2¢ 2cos” 2¢

All ellipses e, c € have the same excentricity ¢, since it equals the difference of the z-coordinates of the
respective principal and secondary vertices on the vertical cylinder (Miiller and Krames, 1931, p. 208).

For all points P in space with a top view P’ € e, ' opposite to the top view of the double line (see Fig. 1, right),
the pedal curve on €, i.e., the locus of pedal points of P on the generators of C, coincides with e, . This holds
since right angles enclosed with generators of € appear in the top view again as right angles, provided that the

IThe remaining part of the curve of intersection consists of two complex conjugate lines at infinity in the plane x + iy = 0.
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spanned plane is not parallel to the z-axis. Thus, all pedal curves of a Pliicker conoid are planar. Furthermore, all
surface normals of € at points of e, meet the vertical line through P’.

Figure 1. Pliicker’s conoid € (left: axonometric view, right: top view) with central generators c; and ¢, torsal generators #; and #,, the
generator g, through X, and the ellipse e, €N Ty, .

Remark 1: Another remarkable property of the cylindroid is reported in Stachel (1995): Let four generators g;,
.-» 4 © € be called cyclic if their points of intersection with any fixed tangent plane ty,, are concyclic, i.e.,
located on a circle (and on the ellipse e, ). Then, in each tangent plane their points of intersection are located on

a circle. Moreover, there is an infinite set of spheres which contact these four lines, and, apart from four
generators of a one-sheeted hyperboloid of revolution, this is the only choice of four lines in space with this
property.

2. BISECTOR OF TWO SKEW LINES

For two given point sets Sy, S, in the Euclidean plane E? or three-space [E, the set of points X being equidistant
to Sy and S, is called the bisector of S; and S,.

Figure 2. Points X of the bisector & of the two lines £, and ¢, satisfy X ¢, = XF, = XF, = X(, .
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In the case of two given points P,Q € [E3, the bisector is the orthogonal bisector plane Gpo Of P and Q. The

standard definition of a parabola in E? as the bisector of its focal point and directrix reveals that each paraboloid
of revolution in E? is the bisector of a point F and a plane not passing through F. However, also the equilateral
hyperbolic paraboloid is a bisector, as reported, e.g., in Salmon and Fiedler, 1863, p. 154, and stated in the
theorem below.

Theorem 1: Let £, and €, be two skew lines in E* with 2¢ = # €1€, and shortest distance 2d:= 00, .

1. The bisector of {1 and €, is an orthogonal hyperbolic paraboloid & (Fig. 2). If {1 and €, are given by z = +
d and x sin ¢ = %y cos o, then

sin 2@
2d

P z+

xy = 0. (5)

2. The axes of symmetry c1 and c, of the two skew lines €1, {>, which coincide with the x- and y-axis of our
coordinate frame, are the vertex generators of P; the common perpendicular of €1 and €, is the
paraboloid’s axis. The lines €1 and {5 are polar w.r.t. P, i.e., each point Xy € {4 is conjugate w.r.t. P to all
points X, €{,, and vice versa.

3. At any point X € &, the tangent plane Ty, to & is the orthogonal bisector plane .. of the pedal points
Fi, F of X on the lines {y and {3, respectively. Hence, & is the envelope of the bisecting planes & .. for all
points F1 € {1 and F5 € {;.

4. The generators of P are the axes of rotations in E* which send the line €y to the line t,. Therefore, the
generators of & are axes of one-sheeted hyperboloids of revolution passing through the given pair of skew
lines ({1, £2). These hyperboloids are centered on the vertex generators c4, ¢, of $ and share the secondary
semiaxis b = d cot ¢ (Fig. 4 and 5).

Proof: 1. Let any line ¢ be given in vector form as p + Rv with ||v|]| = 1. Then, its distance to any point X with
position vector x satisfies

X0 = | x=p|P ~(x-p,v)

) (6)
where {, ) denotes the standard dot product. If £ is replaced with one of the given lines ¢4, £, with
p=1(0,0,%d) and v=(cos @, £sin @, 0) for 0<ep<m/2 and d>0,
then X_Zl = X_Ez is equivalent to
x2+y2+ (z—d)* — (x cos @ + y sin @)* =x* +)* + (z + d)* — (x cos ¢ — y sin @)?,
and consecutively, to
P: 2dz +xysin2¢=0. (7

This is the equation of an orthogonal hyperbolic paraboloid (Fig. 2). The rotation (x, y, z) = (x°, y’, z’) about the
z-axis through /4 with

Al

x=—=(x-y),  y=m(ty), z=z
\/E b \/5 b 2
yields the standard equation

sin2¢  ,, 2
227+ —— (¥’*—=»"%)=0.
g &)
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2. Two points X3 = (x1, ¥1, z1) and X, = (x2, y2, z») are conjugate w.r.t. the paraboloid & (7) if and only if

sin 2¢
2d

(x1y2+x2¥1) + (21 +22)=0.

This is satisfied by each X; € {; and X; € ¢, since
Xi=(r1cos @, rysin @, d) and X, = (r cos @, —r; sin ¢, —d ).

The origin is the vertex of the paraboloid & ; the x- and y-axis are the two vertex generators ¢; and c;.

Figure 3. The tangent plane T xjp AtXto the bisecting paraboloid J is the orthogonal bisector plane G .. of the respective pedal points F;

and F, of X on the lines ¢4 and ¢,.
3. Let F; and F; be the pedal points of X € & on the lines ¢1 and {5, respectively. Then, X is uniquely defined as
the point of intersection between the orthogonal bisector plane o, of F; and F, and the planes orthogonal to

{1 and ¢, through the respective points F; and F,. The generators g4, g, of & through X pass through the pedal
points Cy, C; of X on the vertex generators ¢; and ¢, of &. The tangent plane 1y, to & at X is spanned by g1

and g,.

Now, we project the scene orthogonally into the [x,y]-plane (Fig. 3): The top view of the z-axis is the common
point of £;" and ¢,’. Since F; and F’, are at equal distance to the [x,y]-plane, but on different sides, the bisecting
plane 6 intersects the [x,y]-plane along the orthogonal bisector line of the top views F;" and F>'. The Thales

circle with diameter X’z’ passes through ;" and F>’, and also through the pedal points C;' of X’ on ¢,'fori =1,
2. Since the arcs from Cy’ to F;1’ and to F5’ are of equal lengths, point C; lies on the trace of o FE which must
be a diameter of the Thales circle. Hence, this diameter coincides with the trace [C1,C2] of 1y, , which proves
the coincidence of Ty, and opp .

4. If g is the axis of a rotation which sends ¢; to £, then each point X € g has equal distances to £; and ¢,, which
implies g € &.

Conversely, let g be the generator of &, which intersects ¢; orthogonally at any point M. The reflection in ¢4

exchanges ¢; and ¢, while g is mapped onto itself. Consequently, there are equal distances g_fl:g_ﬂ2 and

congruent angles & gf; = & g{,. The reflection in ¢; exchanges also the pedal points Ny, N, of M on ¢4 and £5;
the midpoint of N1 N, lies on ¢4 (Fig. 4).

The generator g is orthogonal to ¢; and also to N1V, since g © 1y, lies in the orthogonal bisector plane o .

Therefore, g is orthogonal to the plane connecting M, N;, and N,. Furthermore, the lines [M,N;] and [M,N,] are
the common perpendiculars of g with £; and £,, respectively.
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Figure 4. Gorge circles of hyperboloids of revolution through ¢; and ¢,. The axes of the hyperboloids form a regulus of the bisecting
orthogonal hyperbolic paraboloid & (Theorem 1,4. or Krames, 1983).

There is a rotation about g which sends N; to N,. This rotation takes ¢; into a line 7 through N,, which is

orthogonal to MN, and includes with g an angle congruent to 4 g¢,. We obtain 7 = {,, since otherwise ¢ would
be symmetric to £, w.r.t. the meridian plane gN, and therefore, as a member of the complementary regulus,
intersect £.

Under a continuous rotation about g, the line ¢; forms one regulus of a one-sheeted hyperboloid of revolution F
(see Fig. 5). It is centered at M and its gorge circle passes through the pedal points N; and N, of M on the given
lines 51, 52-

&z

Figure 5. Two hyperboloids of revolution #;, %, through two skew lines ¢; and ¢,. The hyperboloids share the secondary semiaxis b and
the distribution parameters +b of their generators.

When M varies on ¢4, we obtain a one-parameter family of one-sheeted hyperboloids of revolution through the
skew generators £; and ¢, (Fig. 5). Due to a result of Wunderlich (1982) and Krames (1983), these two skew
generators {4, {> define already the secondary semiaxis b of these hyperboloids, namely b = d cot ¢, where 2d =
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M and 2¢ = & {410, (see also Odehnal et al, 2020, p. 37). Of course, the same holds for points M € c¢,. By the
same token, +b or —b equals the distribution parameter of all generators of the hyperboloids. o

Remark 2: The complete intersection of any two hyperboloids of revolution #,, €, through the two skew lines
{1 and £, (according to Theorem 1, 4., see Fig. 5) consists of two more lines which need not be real. They can be
found as common transversals of ¢4, £», and two other generators of the hyperboloids, one of each, and both
skew to ¢; and {5.

Figure 6. All pairs of skew lines (¢;, £2) which share the bisecting orthogonal hyperbolic paraboloid & are located on a Pliicker conoid €.
Generators g of &P are axes of rotations with £; - £, (courtesy: G. Glaeser).

Let us focus on the paraboloid & with the equation (5) and ask the following: Where are all pairs (¢4, £3) of lines
for which & is the bisector? The answer, as given in the theorem below, was disclosed in Husty and Sachs
(1994), but already reported at the turn to the 20th century in Schilling (1911), p. 54.

Theorem 2: All pairs of skew lines (€1, {2) which share the bisecting orthogonal hyperbolic paraboloid & are
located on a Pliicker conoid (cylindroid) C in symmetric position w.r.t. the vertex generators ¢, and c; of 9.

Proof. Let the lines ¢; and £, be given in the same way as in Theorem 1. Then, the bisector & remains the same
if the quotient (sin 2¢)/d does not change. Obviously, all points of ¢; and ¢, satisfy

®)

C: (x*+)y*)z—2cxy=0 where c:= )
sin 2¢
This equation defines a Pliicker conoid €, as introduced in (2) (see Fig. 6). The surface € has the x- and y-axis as
central generators ¢, and ¢, and the z-axis as double line. All pairs ({1, £;) are symmetric w.r.t. ¢; and ¢, and
polar w.r.t. 9. o

Schilling’s famous collection of mathematical models contains as model XXIII, no. 10, the pair of surfaces C
and &, each represented by strings with endpoints on a closed boundary curve of degree four (see Fig. 72 and
compare with Fig. 8). The two boundary curves are even congruent, as we confirm below in Theorem 3.

’The displayed model belongs to the collection of the Institute of Discrete Mathematics and Geometry, Vienna University of Technology,
\url {https://www.geometrie.tuwien.ac.at/modelle/models_show.php?mode=2&n=100&id=0}, retrieved March 2020.
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Figure 7. String model of a Pliicker conoid € together with the surface formed by its normals along the central generators ¢, and ¢, an
orthogonal hyperbolic paraboloid &. This is model XXIII, no. 10, out of Schilling’s famous collection of mathematical models. In addition,
the lines ¢4 and ¢,, which are also vertex generators of &, are marked in red color.

By the same token, all generators of the orthogonal hyperbolic paraboloid & are surface normals of the Pliicker
conoid along any central generator. This follows from (4): For ¢ = 0, the surface normal at the point (r, 0, 0),
r € R, has the direction of (0, —2c, r). For ¢ = /2, the normal at (0, r, 0) has the direction of (2c, 0, 7). Now we
can confirm that the points (r, —2ct, 7f) and (<2ct, r, rt) for all (r,f) € R? satisfy the paraboloid’s equation

P xy+2cz=0 &)
according to (5) in the case
c=— d . (10)
sin 2¢

The same follows from Theorem 1,4. as the limit £;— 5, i.e., d = 0: All generators of & are axes of one-sheeted
hyperboloids of revolution which contact the conoid € along one of the central generators.

We summarize some properties of the pair of surfaces € and & (see Figs. 7 and 8), which share the distribution
parameter § = 2¢ at ¢; and c;:

Theorem 3. Let P be the orthogonal hyperbolic paraboloid (9) and € be the Pliicker conoid satisfying (8).

1. The generators of P are the surface normals of € along its central generators cq1 and c,.

2. Each generator g of P is the axis of concentric one-sheeted hyperboloids of revolution which intersect
C along two skew generators €4, €, being symmetric w.r.t. ¢c1 and c,. The gorge circles lie in the
tangent plane to € at the point M where g C P intersects the vertex generator of the complementary
regulus.

3. The right cylinder x?+ yZ= 4c?with radius 2c equal to the width of € intersects $ and € along two
quartics which are symmetric w.r.t. the [x,y]-plane (Fig. 7).

4. The polarity in the paraboloid & maps the Pliicker conoid € onto itself. Outside the torsal generators,
there is a symmetric one-to-one correspondence between points Q1, O, on C such that Q, is the pole
w.r.t. & of the tangent plane to Cat Q4, and vice versa.

Proof: 2. We vary d and ¢ such that ¢ = d / sin 2¢ remains constant. The hyperboloids with the same axis g
through M € ¢4 share the plane [M, N1, N;] of the gorge circle, where the points N, N, are the pedal points of M
on the corresponding pair of lines £, £,. This plane orthogonal to g is tangent to € at M. The pedal points N; and
N, belong to the pedal curve of M on €, which is an ellipse with the minor axis OM along c; (note Fig. 1, right).
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Figure 8. The surface normals of the Pliicker conoid € along the two central generators ¢, and ¢, form the two reguli of an orthogonal
hyperbolic paraboloid & (courtesy: G. Glaeser).

3. We plug x = R cos ¢ and y = R sin ¢ into the equation (9) of € and obtain R?z - 2cR? sin ¢ cos ¢ = 0. The
same substitution in the equation (9) of £ results in R* sin ¢ cos @ + 2cz = 0. The choice R = 2¢ gives rise to two
symmetric curves z =+ ¢ sin 2¢ (Figs. 7 and 8).

4. We use the parametrization x(r, ¢) from (3) and set O, = (r;, ¢,) for i = 1,2. Then, the tangent plane at O, to
C satisfies (4),

Tole " 2¢ cos 2¢1 (x sin @, — y cos @1) + 71z =ryc Sin 2¢;.

The polar plane of O, w.r.t. £ in (9) is given by

17 (x sin @2 +y cos @) + 2cz = —2c¢ sin 20;.
We obtain an identity of the two planes when we set

@2 =—@1 and ryry = — 4c? cos 20. O (11)
The correspondence of item 4 reveals: If points Q; is at the distance ; = 2¢ to the double line, i.e., on the
quartic ¢, as mentioned in item 3, then the corresponding point O, has a tangent plane which is inclined under
45°, since rp = 8 = 2¢ cos 2¢,. The polarity in & maps the ellipse € C @en Tg e ) Onto the quadratic tangent

cone of € with the apex O,. The tangent planes of this cone, i.e., the planes spanned by Q, and any generator of
C, intersect € in ellipses passing through Q,. All points of the ellipse e, are conjugate w.r.t. & to the point Q.

Remark: 1f g4, ..., g4 are concyclic generators of € (cf. Remark 1), then the bisecting paraboloids for any two of
these four belong to a pencil of quadrics. Their common curve is a quartic with a double point at the ideal point
of the z-axis. The infinitely many spheres which contact gy, ..., g4 are centered on this quartic. The top view of
this spine curve is an equilateral hyperbola. For proofs and further details see Stachel (1995).

3. PLUCKER'S CONOID AS LOCUS OF INSTANT SCREW AXES FOR SKEW GEARS

In spatial kinematics, the Pliicker conoid € is well-known as the locus of instant axes €1, of the relative screw
motion for two wheels which rotate with constant velocities w; and ®, about fixed skew axes ¢; and {5,
respectively. The axes of symmetry of the two axes of rotation ¢; and £, coincide with the central generators ¢,
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¢, of €. The axodes of the relative screw motion are hyperboloids of revolution #;, €, with mutual contact
along ¢4, (Fig. 9).° They are solutions of the purely geometric problem: For given skew axes 1, £, find pairs of
hyperboloids of revolution which contact each other along a line.

A standard proof of this result uses dual vectors for the representation of oriented lines and screws (see, e.g.,
Figliolini et al, 2007). Here we present another proof:

Figure 9. Two hyperboloids of revolution in contact along the line ¢,, (courtesy: G. Glaeser).

The common surface normals of the two hyperboloids #,; and €, along the line of contact ¢, form one regulus
of an orthogonal hyperbolic paraboloid & which passes through the axes ¢; and ¢,. The line £, is the vertex
generator of the complementary regulus on &. The other vertex generator of & intersects all three lines €1, €1,
and £ orthogonally. Therefore, it is the common perpendicular of ¢; and £,. These conditions will prove to be
sufficient for identifying the locus of the lines ¢4, as a Pliicker conoid.

We use the coordinate frame of Section 2 and define ¢; and £, by z=+d and x sing ==+ y cos ¢. Then the z-axis
is the common perpendicular, and we can assume that £, is given by

z=a and xsina=ycosa

(see Fig. 10). Now we intersect the orthogonal plane to £, through any point X = (r cos «, r sin a, a) € {1, with
{1 and ¢,, and we obtain

3 The various relations between the two fixed axes of rotations £;, {5, the relative axis €1, the angular velocities w3, w, and the pitch of the
relative screw motion can be visualized in the so-called Ball-Disteli diagram, which arises from € by a particular projection (see
Figliolini et al., 2007, Fig. 7). It is noteworthy that we still obtain a Pliicker conoid as the locus of relative screw axes when the two
wheels perform helical motions with fixed pitches about fixed axes (Figliolini et al., 2007, Fig. 10). This is also a consequence of the
following classical result Pliicker’s in connection with linear line complexes: The axes of all linear line complexes which are
contained in a pencil belong to a Pliicker conoid (Miiller and Krames, 1931, p. 214).
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- rcos @ ’ rsin@ . dler, and X, = 7 cos ’ —rsin@ L —dler,.
cos(a—@) cos(a—@) cos(au+ @) cos(a+)

In the top view, the three points X, X3, and X; appear already aligned. Therefore, they are collinear in space if
and only if the segments X1.X and XX, have the same slope. This means,

a-d a+d
tan(a—¢) tan(o.+¢@)

hence

sin 2¢ B sin 2al
cos(a—@)cos(a + ) cos(oL—@)cos(aL+ @)

After exclusion of the cases where cos(a — @) cos(a + @) =0, i.e., « = @ + 1/2, we conclude

sin2a

a=—
sin 2@

as the relation between the altitude a and the polar angle a of the wanted line €1, of contact. This is the equation

(1) of a Pliicker conoid in cylinder coordinates. In the excluded cases, the line 1, intersects one of the given

axes and is orthogonal to the other. Then, one hyperboloid degenerates into a cone and the other into a plane.

Z

Figure 10. The axes ¢;, {,, the line of contact ¢1,, and a portion of the Pliicker conoid €.

Theorem 4. If the given skew lines {1 and {, are axes of hyperboloids of revolution which contact each other
along any line €1, then the lines {1, are located on a Pliicker cononoid C with the axes of symmetry of {; and £,
as central generators. Conversely, on € each generator which is skew to {1 and €, serves as a line of contact be-
tween such hyperboloids.

Corollary 5. Let g be any generator of the Pliicker conoid C and n be an orthogonal transversal of g. If all
points of intersection between n and C are real, then n meets two generators {1, {> of € which are symmetric
w.r.t. the central generators. In particular, at each point X of any central generator ¢ C C the orthogonal trans-
versals to other generators g of C are tangents of C.

Proof. According to the proof of Theorem 4, we can state: If an orthogonal transversal n of g meets any
generator £; C €, then it meets also the symmetric line £5.

However, we can also use the top view in Fig. 1, right, and argue as follows: The lines g and » span the tangent
plane at any point X € g. Each line n 1 g sufficiently close to the double line intersects e, at two points
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symmetric w.r.t. the minor axis of e, . This shows that Theorem 4 can be concluded directly from the planar

pedal curves e, on the Pliicker conoid. m

Remark. The complete intersection of the two contacting hyperboloids %, and €, in Fig. 9 consists of the line
of contact £;, with multiplicity two and two complex conjugate generators of the complementary regulus (cf.
Phillips, 2003, pp. 119-122, and compare with Remark 2).

4. CONCLUSIONS

As explained above, there are various relations between Pliicker conoids €, one-sheeted hyperboloids of
revolution #€, and orthogonal hyperbolic paraboloids #. However, they show up in different, almost contrary
ways:

In Section 2, the axes of the involved hyperboloids of revolution # are generators of &, and the hyperboloids
pass through pairs of lines ({1, £>) on € symmetrically placed w.r.t. the central generators ¢4, ¢, (note Figs. 4 and
5). The orthogonal hyperbolic paraboloid & is orthogonal to € along the central generators (Fig. 8).

In Section 3, the axes ¢4, ¢, of the hyperboloids %, and #, are two symmetrically placed generators of €, and
the hyperboloids contact each other along another generator £;, of C (Fig. 9).

REFERENCES
1. Figliolini, G., Stachel, H. and Angeles, J., 2007. A new look at the Ball-Disteli diagram and its relevance
to spatial gearing. Mech. Mach. Theory, 42(10), pp. 1362—1375.

2. Husty, M. and Sachs, H., 1994. Abstandsprobleme zu windschiefen Geraden I. Sitzungsber., Abt. II,
osterr. Akad. Wiss., Math.-Naturw. K1., 203, pp 31-55.

3. Krames, J., 1983. Uber die in einem Strahlnetz enthaltenen Drehhyperboloide. Rad, Jugosl. Akad. Znan.
Umjet., Mat. Znan., 2, pp. 1-7.

4. Miiller, E. and Krames, J.L., 1931. Vorlesungen iiber Darstellende Geometrie. Band III: Konstruktive
Behandlung der Regelflachen. B.G. Teubner, Leipzig, Wien.

5. Odehnal, B., Stachel, H. and Glaeser, G., 2020. The Universe of Quadrics. Springer Verlag, Berlin,
Heidelberg.

6. Phillips, J., 2003. General Spatial Involute Gearing. Springer, Berlin, Heidelberg.

7. Salmon, G. and Fiedler, W., 1863. Die Elemente der analytischen Geometrie des Raumes. B.G. Teubner,
Leipzig,

8. Schilling, M., 1911. Catalog mathematischer Modelle. 7. Auflage, Martin Schilling, Leipzig.
9.  Stachel, H., 1995. Unendlich viele Kugeln durch vier Tangenten. Math. Pannonica 6, pp. 55-66.
10. Wunderlich, W., 1967. Darstellende Geometrie II. Bl Mannheim.

11. Wunderlich, W., 1982. Die Netzflichen konstanten Dralls. Sitzungsber., Abt. II, dsterr. Akad. Wiss.,
Math.-Naturw. K1., 191, 59-84.

THE 7™ ICGG CONFERENCE | MONGEOMETRIIA 2020 | PROCEEDINGS | Belgrade: 18-21 September 2020
62



Z.BALAIJTI, J. ABEL: THE BIJECTIVE PART OF THE MONGE CUBOID
FOR THE MAPPING OF THE HELIX AND A SPATIAL CURVE ARC

THE BIJECTIVE PART OF THE MONGE CUBOID FOR THE
MAPPING OF THE HELIX AND THE SPATIAL CURVE ARC

Zsuzsa Balajti
Department of Descriptive Geometry, Institute of Mathematics, University of Miskolc, Egyetemvaros, Hungary
PhD, Associate Professor, balajtizs@uni-miskolc.hu

Jozsef Abel
Department of Descriptive Geometry, Institute of Mathematics, University of Miskolc, Egyetemvaros, Hungary
PhD student, abel.jozsefl 6@gmail.com

ABSTRACT

The paper deals with the examination of Monge's theory for ensuring the reconstruction of
curves. There are many ways to add an image plane system to a given curve. The aim is to provide a
mathematically correct condition for these image plane systems added to a given curve for ensuring
the reconstruction of the representation of the curve. In engineering practice, images of a given object
have the same properties in terms of reconstructability in image plane systems that can be moved into
each other by parallel displacement. Therefore, from our point of view, related to the examinations,
the image plane systems that can be moved into each other with parallel shifting are classified into
one class during development. A class of image plane systems is defined by a pair of projection lines,
perpendicular to the corresponding image planes, fitting to the starting point O of a fixed Cartesian
coordinate system. This pair of projection lines is determined by three free angle parameters. These
angle parameters create a Monge cuboid. Image plane systems are determined for a given helix, in
which any piece of the described helix can be reconstructed from only two images. The Monge cuboid
points of these image plane systems are visualised. Mathematical determination of the positions of
two CCD cameras is also presented in this paper to ensure the reconstruction of the cutting edge
curve from its two images.

Keywords: Monge mapping; Monge cuboid; reconstruction; helix; Hermite arc;
cutting edge

1. INTRODUCTION

The representation of a point in Monge mapping is unambiguous, provided the well-known conventions are
fulfilled. Due to the practice of descriptive geometry, anomalies occur during the representation of lines, of which
we are aware. For example, the representation of a circle of a general position and a profile line is not bijective.
For such and similar cases, descriptive geometry provides special solutions to ensure bijectivity. In our approach,
it can be argued that all image planes and their projection lines, which can be movable to each other with parallel
displacement, are members of one class of Monge mappings. We have named this class a Monge projection. At
present, the need for the examination of bijectivity has been brought about by the demand for reconstruction based
on digitised Monge-projections. As long as we consider Monge-projections as identical, i.e. as those which can
be translated into each other, the number of Monge-projections for a given curve can be described using three free
real parameters. Each Monge-projection corresponds to a point of a rectangular prism. Such a rectangular prism
is called a Monge-cuboid. Each point of a Monge-cuboid defines a triplet of real numbers, which is in fact a triplet
of angles providing a Monge-projection with respect to a given curve. The points of a Monge-cuboid can be
divided into two subsets. One subset corresponds to Monge-mappings of the curve and the other corresponds to
the non-bijective mappings.

Many tasks are allocated to the production of worm gear drives in our Worm Scientific School in DifiCAD
Engineering Office, which has a cooperation agreement with the University of Miskolc. One of our aims is the
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supervision of wear on the edge of the hob. The correct positions of CCD cameras have been determined to ensure
the reconstruction of the curve of hob cutting edge, and test the wear.

2. PROBLEM

The point representation in the Monge mapping is unambiguous, provided that the well-known conventions
are fulfilled [S5]. The representation has been made in two image planes K; and K» perpendicular to each other,
with the projection directions v; and v, perpendicular to them. Then, the two image planes are rotated into each
other. The names of the two images of the point are the same as the name of the point, of which the first image
point is marked by the sign ' and the second image point by the sign ".

K

2

12
K, PW

Figure. 1: The mapping of the point P on image plane system {K;, K,}

The image points are located on a straight line perpendicular to the x,, axis. Thus, a point P has only one
ordered pair of points (P’, P"), and an ordered pair of points (P’, P”) has a single point P. Numerous theories for
the modelling of the spatial figures have been given off, which we hold in great esteem [6]. The Monge projection
itself is more general in mathematical terms than described above [2], but the case outlined above is generally
used in technical practice. In the practice of descriptive geometry, anomalies occur during the representation of
lines and circles, of which we have to be aware. Thus, the representation of a circle of a general position and a
profile line is not bijective. For such and similar cases descriptive geometry has found special solutions to ensure
bijectivity. In other words, mutual clarity must be ensured. There are infinite ways to add an image plane system
to a given curve [4]. The aim is to provide certain conditions referring to these image plane systems with respect
to bijectivity of the curve representation.

/ El : pa ,/

(@) (b)

Figure. 2: The reconstruction anomalies of: (a) the line in profile position, (b) the circle in general position

3. SOLUTION

Monge’s representation of an object, i.e. the Monge projection is determined by image planes K; and K,
with the projection lines v, and v, perpendicular to image planes. Hence, for the curve g, not only the image plane
system but also the Monge projection can be added in infinitely many ways. These may include Monge
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projections, in which the representation of any part of the curve is bijective, or those in which there is a piece of
the curve whose representation is not bijective. Our goal is to provide certain conditions about these Monge
projections regarding the bijectivity of the curve representation.

Theorem: 1f a Monge projection is bijective or non-bijective for a given curve, this
particularity does not change if the image planes of the Monge projection are shifted parallel to themselves.

Proof: The parallel offset is a congruence transformation, so the offset does not change the image curves.

Therefore, in the following analysis, we consider two Monge projections to be identical if their image plane
systems {K;,K»} can be dislocated to each other in parallel.

Based on the above, to facilitate further examination, an point O in space has been fixed and the image planes
and projection lines of the Monge projections must be required to fit into it. While the x» axis, the intersection of
two image planes, can be characterized by two free parameters such as the coordinates of two spheres, the image
planes can be described by one free parameter in the possibilities of rotation about the x;, axis. Consequently, the
Monge projections can be described by three free parameters, in addition to previous constraints.

Figure. 3: The Monge projections that can be moved into each other with a parallel shift

Therefore, a triplet of numbers can be ordered to each Monge projection, the geometric meaning of its members
being an angle. For all this, the direction angles of the line must be determined.

Definition 1: The first direction angle of the line e fitting the origin point O is the angle a (0<o<m), by which the
axis x* can be turned into the first projection e’ of the line e on the plane [xy] towards the direction y*. Let a=0
if the line e is identical to the axis z. The first direction angle of a line missing point O is identical with the first
direction angle of its parallel line fitting point O.

Definition 2: The second direction angle of the line e fitting the origin point O is the angle 8 (0<p<m), by which
the axis y* can be turned into the second projection e” of the line e on the plane [yz] towards the direction z*. Let
B=0 if the line e is identical to the axis x. The second direction angle of a line missing point O is identical with
the second direction angle of its parallel line fitting point O.

Definition 3: The third direction angle of the line e fitting the origin point O is the angle y (0<y<m) , by which the
axis z" can be turned into the third projection ¢” of the line ¢ on the plane [zx] towards the direction x*. Let y=0
if the line e is identical to the axis y. The third direction angle of a line missing point O is identical with the third
direction angle of its parallel line fitting point O.
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Z z z*
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Figure. 4: The first direction angle a in (a), the second direction angle 3 in (b) and the third direction angle y in (c) of the line e

A class of the Monge projection is defined by its image plane system {K;, K,}, or its projection lines vi, v fitting
to the origin point O of the fixed coordinate system. In the remainder of the paper, the Monge projection has been
determined by its projection lines v, v» fitting to the origin point O in Figure 5.

In this approach, a Monge projection can be described by using three free real parameters defined during the
research. These triplets of real numbers create the Monge mapping in the following way:

a is the first direction angle and J3 is the second direction angle of the first projection line v, while angle vy is the
third direction angle of the second projection line v, of the Monge projection.

The projection lines of the Monge mapping and the Monge projection itself have been determined by the triplet
of angles (a,B,y) defined as shown in Figure 5. The projection line v, is determined by the intersection of the first
projection plane V| fitting on the v," and the second projection plane V- fitting on the v,"”, as can be seen in Figure
5. The projection line v, is determined by the intersection of the normal plane N of the first projection line v; at
0, and the third projection plane V3 fitting on the v,”, as can be seen in Figure 5.

Figure. 5: The relation between the triplet of angles (a., B, v) and the projection lines v, v, of the Monge projections in the fixed Descartes
coordinate system
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Definition 4: The subsets of values a, § and y in the interval [0, ], which can clearly be linked to a Monge
projection, are described in another Descartes coordinate system O[a., 3, v], which we have named the Monge
cuboid.

SIE|

(@ (b)
Figure. 6: The inner points (a) and border points (b) of the Monge cuboid

The inner points of the Monge cuboid satisfy the condition

O0<a<rm, 0<pB<n/2 or x/2<p<n, 0<y<nm (Eq.1)

The border points of the Monge cuboid satisfy the following conditions

-0<a<n, p=rn 0<y<m,

—-0<a<zm, 0<pB<z/2, m/2<p<n, y==, (Eq.2)
—a=x, B=r/2, 0<y<nr/2, n/2<y<n,

—a=0, B=xn/2, y=x/2,

—a=xn, p=0, y=nr.

One Monge projection corresponds to a point of the Monge cuboid in a defined way. In the opposite direction,
any point of the Monge cuboid defines a triplet of real numbers which is in fact a triplet of angles providing a
Monge projection. The connection between the Monge projections and the points of the Monge cuboid is a
mathematical mapping.

Theorem: If, for a given curve g, a given Monge projection is bijective or non-bijective, then the Monge
projection obtained by exchanging the image planes K and K> and the projection lines v; and v; is also bijective
and non-bijective for the given curve g.

Proof: By interchanging the image planes K, and K5 and the projection lines v; and v, the image curves g’ and
g" of the curve g do not change, only their notations are reversed, i.e. g’ becomes g” and g” becomes g'.

All Monge projections are discussed during the procedure, except those whose projection lines satisfy the

conditions v; ¥ [z x] and v, £ [z, x] at the same time. This method does not discuss all Monge projections, but
covers all two perpendicular projections that are relevant in engineering work. This proves to be enough for our
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examination, because the examination of bijectivity with respect to the given curve gives us the same result if
the first and the second image are exchanged [1].

3. 1. The method of examination of curves

Simple curves will be examined through the following steps:

e  positioning the curve in the fixed coordinate system O(xyz),
e  creating the direction cone by moving its tangents parallel to the origin point O,

e  examining the bijective and non-bijective regions of the Monge cuboid for a given curve by the relative
position of the direction cone and the profile planes in the fixed coordinate system.

3.1.1. The examination of the bijectivity of the helix

Due to the cyclicity of the helix, it is sufficient to examine one thread. The axis of the helix must fit on the
axis z of the Cartesian coordinate system, starting on the axis X.

Figure. 7: The border points of the Monge cuboid

The parametric equation for a thread of a helical line with the parameter p on a z-axis cylinder of radius

X=r-cosQ

_ . (Eq3)
y=r-sing
Z:p.¢

where p € R\{0}, r € R, 0< ¢p<2m.
The coordinates of the tangent vectors r. of the helix are obtained by the derivation
X, =r-sing
(Eq.4)
Y. ="r-cos@
Z.=Pp

These tangent vectors, passing through the origin point O, create the direction cone of the curve, as can be seen
in Figure 8. The constant angles enclosed by the tangent vectors and the axis z are called w.
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(a) (b) (©
Figure. 8: The direction cone and the profile plane P of the Monge projection at the origin point O with two common cone-creators in (a),
with one common cone-creator in (b) and no common cone-creator in (c)

In any Monge projection, the profile plane P contains one or two straight lines of cone-creators andthere is a
tangent in the profile direction to the curve. All this implies that it may be a piece of the curve whose description
is not necessarily bijective in this Monge projection. If the profile plane P of a Monge projection does not contain
any tangents to the helix (Figure 8(c)), then the images of the helix are elongated cycloid, or affine plane-curves,
and contain inflection points. In this case, any piece of the helix can be clearly reconstructed from its two images.

Figure. 9: The direction cone and its normal cone

The normal cone of the direction cone has been created by the normal vectors n(ny, ny, n,) of the tangent planes
of the direction cone in the point O, as can be seen in Figure 9. The cone creators of the normal cone of the helix
are the normals of the profile planes, touching the direction cone of the helix.

Let n(ny, ny, n,) be a unit vector, so that length is |n| =1, and z(0, 0, 1)is the unit vector in the direction of the

axis z.

Internal product of the two vectors

n-z=sinw (Eq.5)
and

n-z=n_-0+n,-0+n, -1 (Eq.6)

SO
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n, =sinw (Eq.7)
Using the condition ‘n‘ =1
n; + 0y + sin‘w=1 (Eq8)
transforming this
nl+ ni =cos’ @ (Eq.9)

The ( Eq. 9) is an equation of a circle with the value cos@ of the radius.

It can be determined that the direction cone of the helix and the profile plane of a Monge projection in case
2 2 2
n,+ny >cos” @ (Eq.10)
have two common cone creators,
n; + n, =cos’ (Eq.11)
have one common cone creator, while
2 2 2
n, +ny <cos” @ (Eq.12)
have no common cone creators.

The aim is to determine the Monge projections for profile planes with the n normal vector which satisfy the
(Eq.11) and (Eq.12) and determine the conditions for the coordinates (a,,y) of the Monge cuboid, since in these
Monge projections ordered to these points the representation of the helix is bijective.

Since the direction vectors v; and v; of projection lines are perpendicular to each other, the following equation is
satisfied

v,-v,=0 (Eq.13)
which can be written in the following form, if vi(vix, Viy, Viz) and va(vax, Vay, V27)

le .V2x + Vly .V2y + Vlz .V2z :O
(Eq.14)

Also, according to Figure 5, the following simple relationships can be read in the case o, B,y # 0,

- g = vy, /le (Eq.15)
- 1gf = Vlz/Vly
- 187 = Vo, [V,
and in the case a, B, vy # 1/2
- ciga= vy /v, Eal6)

- cigf = Vly/vlz
- c1gy = vy, /vy,

Derived from all this, the conditions determining the bijective part can be stated, taking into account the
appropriate limitations.

If the axis of a helix and its tangents create the angle o, then the bijective part of the Monge cuboid with
respect to the helix is formed by number triplets (o, 3, y) satisfying the following conditions
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incasea, B,y # 0, 72, n:
(tga -ctgy +tg f+tg a-tg2 [retgy )/ (-ctga -tgf -ctgy -tgar ))2 +
+((tgar - tgf - ctgy )/(-ctga - tg fretgy -tgar))* <ctg’ @

O<a<rm;f=rn; y=/2

incase O0<a<rz; f=m 0<y<zaR,xRR<y<urx:

sin® atg® y +cos” a-sin® a-tg® y <ctg® @

incase0<a <m2, M<a<m0<pB<am2, W2<pB<rm, y=rm:

(-tgB-ctgB)’ /etg’a +ctg’ B <ctg® w

incase x =w2;0< <2, 2< pB<rmyy=m/2:
tg’ B <ctg’ w

incase @ =W2;0< B <2, 72 <PB<m;0<y<nRR,xRR<y<nr:
((ctgﬁ+tg,6’)+tg27/)2/ctg2,8 ‘tg’y <ctg’ @

incase0<a<zn/2, M2<a<nm,0<pB<xa/2, M2<p<rm, y=m2:

tgzﬂ-(lthgza)/(—tg,B -tgar) <ctg’ @

(Eq.17)

The bijective part of the Monge cuboid with respect to the helix in case w=n/4 is visualized by green inner points,
the blue border and bisecting plane points, as shown in Figure 10.

Figure. 10: The bijective part of the Monge cuboid

The triplet a=/4, f=m/4, y=7/4 satisfies the conditions, so that in the Monge projection belonging to it, any piece
of the helix can be clearly reconstructed from only two pictures, as shown in Figure 11(a). The triplet a=7/3,
P=m/3, y=m/2 does not satisfy the conditions, so that in the Monge projection belonging to this triplet, the helix
has a piece which cannot be reconstructed unambiguously from only two pictures, as shown in Figure 11(b).
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Figure. 11: In case o=m/4, the bijective (a) and non-bijective (b) mapping of the helix

3.1.2. The condition of the reconstruction for a spatial curve

The analysis of a spatial curve has been carried out using the Hermite arc, which has been formed by points

Po, p3 and their tangents ty, t3. The Hermite arc can be formulated in the form of a third-order polynomial as follows
r(u)=a,u’ +a,u’ +au+a,

(Eq.18)
where u€[0,1]. Completing the appropriate substitutions and rearrangements, we obtain the equations

4, =Py

a, =p;

a,=-3-p,+3-p;-2-t,-t;

(Eq.19)
a,=2-p,-2-p,+t,+t,

The tangent vectors can be described in the following form

r(u)=eu’ +e,ute,

(Eq.20)
where
e, =6-p,-6-p, +3-t, +3t,
62:_6.1)0—|-6.p3 _4.t0_2.t3 (Eq.21)
e, =t,

The vectors n are normal to the planes fitting the tangent vectors re, thus satisfying the equation
nr, (u)=0

(Eq.22)
If n(ny, ny, n,), e1(€ix, €1y, €12), €2(€2x, €2y, €27), €3(€3x, €3y, €3,), the equation (Eq. 22) can be written in the next form
(nstlx +n, ey, +nz-elz)-u2 +(nx~eZX +n e, -5-nz'e:22)~u+(nx~e3X +n, ey +nz'e3z): 0 (Eq.23)
The vectors n(ny, ny, n,) are searched for the given e; values, to which the second-degree equation considering the
parameter u in (Eq.23) does not have a solution. This is only fulfilled if the discriminant of the second-degree
equation considering u is a negative number, hence

2
(nx.eb( +ny.e2y +nz.622) _4.(nx.elx +ny-ely +nz.elz)(nx.e3x +ny.63y +nz.ek)<0

(Eq.24)
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In addition, the normal vector n of the profile plane P of the Monge-projection is perpendicular to the direction
vectors of the projection lines, hence

n=yvxv, (Eq.25)

The final result has been obtained with suitable replacements and trigonometric identities. Based on this, the
directions of the projection lines, and, thus, the positions of the CCD cameras, are determined to ensure the
reconstruction of the cutting edge of the hob using the interpolated Bezier curve.

The connection between the Bezier curve and the Hermite arc is shown by the following equations

p, =b,

p: =b, (Eq.26)
t,=3-b,-3-b,

t,=3-b,-3-b,

Points p; and po of the cutting edge of the tool have been selected on the addendum and root cylinder and between
them the points p» and p; have been appointed proportionally.

The Bezier curve has to be interpolated to four selected points po, p1, p2, p3 on the cutting edge of the hob,
where the parameters ug, u;, uo, uz, and u; # u; if i # j, as well as up=0 and u3= 1.
Finding the control points bo, b, ba, bs is necessary to determine the interpolation Bezier curve fitting to the
selected points po, p1, P2, P3, thus the following equation is satisfied
b(,)=p, (i=0,...3) (Eq.27)

The equation of the Bezier curve can be given using the well-known Bernstein polynomials

b(u)=iB_}’(u)b, Bl'-’(u)=[}1.juf(]—u)"_f (i=0,.3) (Eq.28)

J

from which the following linear inhomogeneous equation system can be obtained

Py Bg(u,,) B}?(un) B;(un) B;(uo) b,
P, |_|Bi(u,) Bi(u) Bi(u) Bi(u)||b, (Eq.29)

| ) B(f(uz) Bj(uz) sz(uz) B;(uz) bz

P; B[;(%) Bi(us) sz(us) B;(”;) b,
The u#u; condition provides us with a clear result [8] to all b; (1,j=0,...,3). The resulting Bezier curve written with
control points by, b; b2, bs passes through the points po, pi, p2, ps-

The examination of the cutting edge curve can only be performed with two CCD cameras if any piece of the
curve can be unambiguously reconstructed from its two pictures [3].

The spatial positions of the points P, ..., Py of the cutting edge are determined from its images that can be
considered as perpendicular projections [7].

=

815 o O i i e e L e ]

CEFTNE R R Y

-1

______________________________________________

Figure. 12: Photos taken by CCD cameras in an ordered position
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CONCLUSION

The paper gives a special solution to the anomalies’ concept of the reconstruction problem from two photos
and two perpendicular projections. The Monge projections, which can be translated into each other, have been
considered identical. The Monge projections can be described by three free real parameters. The three real
parameters have been defined by the direction angles of the projection lines of the Monge projections in a fixed
coordinate system. One triplet of free real parameters corresponds to one Monge projection, and it is completed
in the opposite direction. The applied triplets of free parameters create the Monge cuboid. All perpendicular
images have been discussed by this method. The Monge cuboid has two subsets which give us the bijective and
non-bijective Monge projections. This method determines the correct positions of CCD cameras to reconstruct
the curve of the cutting edge of the tool. This method is a necessary condition for the possibility of feedback
during machining, as well as a continuous comparison with the mathematical form of the tool edge.
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ABSTRACT
The paper discusses the generation of a specific group of polyhedra, Concave Pyramids of

Fourth Sort (CP 1V). Correspondingly to the method of generating the Concave Cupolae of Fourth
Sort (CC IV), the Concave Pyramids of fourth sort have the similar logic of origination, and their
counterpart in regular faced convex pyramids. The concave polyhedral surface consists of a series
of equilateral triangles, grouped into spatial pentagons and hexagons. Positioned polarly around
the central axis of the regular polygon in the polyhedron’s basis and linked by connected triangles,
the spatial pentagons and hexagons form the deltahedron’s surface area. The criterion of face
regularity is respected, as well as the criterion of multiple axial symmetry. Distribution of the
triangles is based on strictly determined and mathematically defined parameters, which allows the
creation of such structures in a way that qualifies them as an autonomous group of polyhedra —
concave pyramids. The sort of the Concave Pyramids is determined by the number of equilateral
triangle rows in thus obtained polyhedron’s net. The parameters of the solids were determined
constructively by geometric methods.

Keywords: concave pyramids; polyhedral; equilateral triangle; regular polygon.

INTRODUCTION

Concave pyramids belong to the family of previously studied polyhedral structures comprising Concave
cupolae of the second sort (Obradovié, 2019; Obradovic et al., 2008, 2019), Concave cupolae of the fourth (and
higher) sorts (Misi¢, 2013; Misi¢ et al., 2010, 2013, 2014), Concave antiprisms of the second sort (Obradovi¢ et
al., 2013) and composite polyhedra obtained by means of their mutual combination (Misi¢ et al., 2015). The
results of the exploration of the application of these polyhedral structures in architecture and engineering were
presented in (Obradovi¢ et al., 2011, 2013). The common characteristics of the polyhedra above are as follows:

The polyhedral net is a developmental deltahedral surface

Deltahedral net of the polyhedron is formed above the regular polygonal base

The polyhedron has an axis that is orthogonal to the polygonal base plane and crosses the center of
the incircle of the polygonal base

The deltahedral net is obtained by means of polar distribution of the unit cell(s) around the axis of the
polyhedron

The unit cell consists of equilateral triangles grouped around a common vertex

Two faces of the surface net meet on each edge of the polyhedron

The faces of the polyhedron may not protrude each other or intersect, except on the edges

The edges do not intersect, except in vertices

The planes to which the sides belong may pass the inner space of the polyhedron — the surface area is
a concave polyhedral area

Each face is visible from outside — there are no inner sides
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e  There are no two neighboring coplanar faces
e The type of the polyhedron is determined by the number of rows of equilateral triangles in the planar
net of deltahedral surface.

The previous studies have examined the Concave pyramids of the second sort (Obradovié et al., 2014,
2015, 2017). The unit cell consists of five equilateral triangles grouped around the common vertex. All the unit
cells in thus formed deltahedral net of concave pyramids of the second sort have a common vertex located on
the rotation axis, orthogonal to the plane of the polygon’s base. Due to the manner in which the vertex is formed
and the surface area which is a developmental concave deltahedral surface, these polyhedra are termed Concave
pyramids.

A\

Figure 1: Method of generating the Concave pyramids of second sort by folding and creasing the plane net, obtaining two different
types: CP-8M, and CP-8m

Geometrical generation of concave pyramids of the second sort is based on finding the precise
position of the spatial pentagon’s vertex which meets the condition that the vertices A and B are located on the
sides, while the vertex D lies on the axis of polygonal base (Fig. 1). Previous research has shown that there are
two types of concave pyramids of the second sort above the same polygonal base. If the common vertex O is
indented, the concave pyramid of greater height is obtained (CP-II-nM). Conversely, if the common vertex O
protrudes, the distribution of the other vertices in the spatial pentagon is such that it generates a concave
pyramid of a smaller height (CP-II-nm).

Figure 2: Method of generating the Concave pyramids of second sort, tip A and tip B

Apart from this classification of the concave pyramids of the second sort into those with smaller and larger
height, resulting in differently shaped polyhedron, there also two ways in which concave pyramids can be
generated. In the first manner, termed “type A” the number of unit cells in the net is equal to the number of sides
(n) of the polygonal base (Fig. 2) - the unit cell is developed above every side of the polygonal base. In the
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second manner, or “type B”, the unit cell is developed above every other side, and they are mutually connected
by means of equilateral triangles. The second manner of generation can only be applied to concave pyramids of
the second sort which are formed above the polygonal base with even number of sides.

Table 1: All possible shapes of concave pyramids of the second sort

CPII n=6 n=7 n=8 n=9
CP II-mA . . .
CP II-MA . ° ) °
CPII-B ° °

Table 1 shows all possible shapes of concave pyramids of the second sort. As can be seen, they can be

developed above polygonal base & = n = 9. The net CP II-10B and CP II-9mA protrudes the plane of the
polygon’s base so that the polyhedron itself cannot be formed, but it is possible to generate the net, which has
been used (Misi¢ et al., 2015) to form composite polyhedral structures (Emmerich, 1986).

2. CONCAVE PYRAMIDS OF THE FOURTH SORT

This paper presents the results of the study of ‘type B’ concave pyramids of the fourth sort. The generation
of the concave pyramids of the fourth sort is based on predefined conditions described in the introduction, which
classify those polyhedrons into a unique family of concave polyhedral structures. The unit cell consists of the
spatial hexagon ABCDEF (six equilateral triangles grouped around the common vertex O; and the spatial
pentagon EDGHIJ (five equilateral triangles grouped around the common vertex O,), with the common edge ED
(Fig. 3). Thus formed unit cell in turn forms the surface of the concave pyramid by planar distribution around
the axis orthogonal to the base plane. In the deltahedral surface area CP-IV two neighboring unit cells are joined
by means of an equilateral triangle (with which they share the common edge BC, or AF) and the spatial
tetrahedron (four equilateral triangles grouped around a common vertex Q) with which they share the common
sides CD, DG, or FE, EJ. The common vertex of all unit cells (marked as vertex H in Fig. 3) lies on the
polyhedron’s axis.

Figure 3: The unit cell of the concave pyramid of the fourth sort and orthogonal projection onto the base plane

The geometry of the unit cell defines the possible size of the polygonal base. The condition that the
radius of polygon’s base incircle must be:
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a3

r<<——+a (Eq. 1)

leads us to the conclusion that concave pyramids of the fourth sort can be formed above the polygonal base

whose number of sides is 10 = n = 22,

Geometrical generation is based on finding the unit cell vertex position which meets the following
conditions:
e The vertices A and B are located on the sides, while the vertex H is on the axis of the polygonal base,
e The vertices O;, Oz and H lie on the common plane a,
e The vertices B and D lie on the common plane 3,
e The vertices C, Q, G and H are on the common plane v,
e The planes a, B and y are orthogonal to the plane of the polygonal base of the concave pyramid.

The construction itself relies on the constructive procedure for generating Concave cupolae of the fourth
sort (Misi¢, 2013). In other words, it relies on the fact that the distance between the neighbouring vertices of the
unit cell is always the same and equal to the side of the unit equilateral triangles. To illustrate, let us look at the
construction of the position and height of the vertex D. The auxiliary spheres whose centers are located in the
neigh boring vertices of the spatial hexahedron (vertices Ojand C) are cut by the plane § containing vertices B
and D. Mutual intersection of thus obtained intersecting circles (kjand k») determines the position of vertex D,
following the condition that vertex B must be located on the polygonal plane. By repeating the constructive
procedure above and by determining the position for every unit cell for multiple initial positions of vertex Oj,
we generate the trajectory of vertex H. When thus produced vertex H trajectory is intersected by the plane
containing the polyhedron’s axis, we obtain the sought position of vertex H, and the final position of all the
other vertices of the unit cell.

The constructive procedure to generate the vertex H trajectory allows us to choose the position of vertices
C, Q and O, with a larger or a smaller height, which results in 8 possible variations of the constructive
procedure for CP IV. The same holds for the construction of Concave cupolae of the fourth sort, for which
reason the same manner of denotation of the variants of the constructive procedure has been adopted:

CP IV-B (CQO2) smaller height for C, Q and Oz
CP 1V-B (CQ"0:") smaller height for C, larger height for Q and O2
CP IV-B (CQ"02) smaller height C and Oa, larger height for Q
CP IV-B (CQO>") smaller height for C and Q, larger height for vertex O2
CP IV-B (C'QO) larger height for C, smaller height for Q and O2
CP IV-B (C*'Q"02) larger height for C and Q, smaller height for O
CP IV-B (C'QO2") larger height for C and Oz, smaller height for Q
CP 1V-B (C*'Q"0x") larger height for C, Q and Oa.

© N UEWN R

The change of the shape of the concave pyramids of the fourth sort depending on the choice of the
constructive procedure is in this study illustrated by the case of the concave pyramid above the dodecagonal
base. The planar net CPIV-12B is shown in Fig. 4.
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Figure S: The change of the shape of CC 1V-12B depending on the choice of the constructive procedure (vertical section of three
positions of a unit cell) a) CP IV-12B (CQ"0,"), b) CP IV-12B (CQ"0,), ¢) CP IV-12B (C'Q0,), d) CP IV-12B (C'Q"0y), €) CP V-
12B(C"Q0,"), ) CP IV-12B (C'Q°0,")

Concave pyramids of the fourth sort above the dodecagonal polygonal base can be formed by using the
following variations of the constructive procedure: CP IV-B (CQ"0), CP IV-B (C*Q0,) and CP IV-B (C*Q05")
(Fig. 5-8). In other cases the vertex H trajectory does not intersect the plane to which the polyhedron’s axis
belongs or the faces of the polyhedron protrude each other or intersect - constructive procedure variations CP
IV-B (CQOy) and CP IV-B (CQO,"), so that it is not possible to generate a concave pyramid which meets the
predefined starting conditions. The trajectory passes by the plane - constructive procedure variations CP IV-12B
(C*Q"02) and CP IV-12B (C'Q"02"), or distances itself from the plane of the polyhedron’s central axis when
the position of vertex O; is altered (constructive procedure variations: CP IV-12B (CQ*0;") (Fig. 5).

Figure 7: CP IV-12B(C"QO,) - orthogonal projections and spatial model
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Figure 8: CP IV-12B(C"QO;") - orthogonal projections and spatial model

The study has shown that above every polygonal base 10 = n = 22 it is possible to generate CP-IV by
applying different variations of the constructive procedure. However, this research has not uncovered the rule
which defines the possibilities for forming CP IV for the given polygonal base and the given variation of the
construction procedure. For that reason, we examined all the possible cases, and the results are shown in Tab. 2.

Table 2:. Concave pyramids of the fourth sort — the possibilities of their generation above different polygonal base by applying
different construction procedure

CPIV-B n=10 n=12 n=14 n=16 n=18 n=20 n=22

CP IV-B (CQO») .
CPIV-B (CQ'0)
CPIV-B (CQ'0y) . . .
CP IV-B (CQO;") °
CP IV-B (C'QO») .
CPIV-B (C'Q'0y) .
CP IV-B (C"'Q0?") . . . ° .
CPIV-B (C'Q'0;)

Bearing in mind that the above described generation procedure for concave pyramids of the second and
fourth sort, we maintain that for any concave pyramid above an n-sided polygonal base the following applies:

e  The number of vertices is calculated by means of the formula:
v = 9?“' +1 (Eq 2)

e The number of edges is calculated by means of the formula:

o= % (Eq. 3)

e  The number of faces is calculated by means of the formula:
f=8n+1 (Eq. 4)

CONCLUSION

By observing predefined conditions for generating the family of concave polyhedral structures which
include the previously studied concave cupolae of the second and higher sort, concave antiprisms of the second
sort and concave pyramids of the second sort it is possible to constructively generate type B concave pyramids
of the fourth sort. There are 12 polyhedrons of this type whose generation relies on the constructive procedure
for forming the concave cupolae of the fourth sort. It has been proven that for the same polygonal base it is
possible to generate more than one CPIV-nB. The presentation of thus formed new polyhedrons and the
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confirmation of accuracy of the selected constructions was performed by means of the software package
AutoCAD 3D models. Future research may focus on the confirmation of the results presented in this paper, as
well as on analytical methods, application of appropriate iterative numerical procedures and the exploration of
the applicative potential of these polyhedrons in architectural geometry.
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ABSTRACT

In the paper we deal with a geometrical problem which originates from the Erdos-Mordell
inequality (EMI) for regular polygons generalizing it by defining Weberian focal-directorial surfaces
(WFDS). Furthermore, we derive such surfaces in a way suitable for their visualization and present
possibilities of the application of Weber’s surfaces generated by eight foci and eight directrix lines

at most.
Keywords: algebraic equation; Erdés-Mordell inequality; Erdés-Mordell curve and
surfaces; Weberian focal-directorial curves and surfaces
INTRODUCTION

The research of trifocal and tridirectorial curves paired with the research of geometrical Erdos-Mordell type
inequalities for triangles, published in the paper of Malesevi¢ et al. (2014), has brought about the unification of
these two areas into a general Weber-type location problem. In the papers (Petrovié¢ 2016, 2019) defines Weberian
focal-directorial curves (WFDC) as locus of points in a plane with a constant sum of distances to m foci and n
directrices. Obtained in such a way, the locus of points in a plane, of the combined multifocal and multi-directorial
curves, are tied to location problems and are otherwise called isocost curves. In this paper, through setting
foci/directrices in such a way that they coincide with vertices/sides of regular polygons and through the analysis
of positive and negative scaling coefficients, i.e. Weber weight factors corresponding to their respective distances,
a new visual interpretation of the Erdds-Mordell inequality for regular polygons is shown.

The proofs of Erdos-Mordell inequality are often based on the proofs of various other inequalities, as given in the
papers (Liu, 2020, 2019, 2018a, 2018b; Minculete, 2012; Obradovi¢ et al., 2012; Gueron and Shafrir, 2005;
Pech, 1994). In the paper of Banjac et al. (2014), authors described one approach for the visualization of Weber’s
curve and surface. In the paper (Banjac et al. 2013), authors verified one conjecture that relates to the Erdos-
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Mordell curve. The paper (Petrovi¢ et al., 2018) deals with the simplest representatives of Weberian focal-
directorial generated two-dimensional entities — conic sections.

2. THE RESEARCH
2.1. Analytical representation

The Erdés-Mordell inequality for a triangle R; + R, + R3 = 2(r; + r, + 13) when interpreted as the Fermat-
Torricelli-Weber problem has the following formulation: the trifocal distances’ sum of a triangle is larger than or
equal to the double value of the tri-directorial distances’ sum of the triangle (foci are the vertices, and directrices
are the sides of the triangle). The above expression for the case of equality can be formulated as the following:

a1R1 + a2R2 + a3R3 + blrl + b27”2 + b37”3 = S, (])

where Ry, R,, R5 are the Euclidean distances to the foci (polygon vertices) and ry, 15, 15 are the Euclidean distances
to the directrices (polygon sides). The Weber weight coefficients corresponding to the distances from the foci are
equal to unit coefficients a; = a, = a; = 1, while the Weber weight coefficients corresponding to the distances
from the directrices are also equal, albeit with negative weight values b; = b, = b; = —2 and the parameter S
equals zero.

We generate a Weberian focal-directorial 3D element in such a way that, for every point on the surface T'(x, y, z),
it holds that its first projection coincide with the respective point M(x,y) of the triangle plane
(T'(x,y) = M(x,y)), while its z-coordinate is represented with the difference between the focal distances’ sum
and the double value of the directorial distances’ sum:

Z=R1+R2+R3—2(T1+T‘2+T‘3). (2)

Furthermore, we generalize this problem by defining Weberian focal-directorial surfaces (WFDS) which
originates from the Erdos-Mordell inequality (EMI) for regular polygons:

Z=Ri+ -+ R, —w(r+-+1), (3)

where £k is the number of sides of a regular polygon and w = 1/cos (r/k) is the Weber weight coefficient.

Let R; be the Euclidean distances to the foci F;(x;, y;) i.e. polygon vertices

Ri=(x—x)%+ (@ —y)? 4)
and let 7; be the Euclidean distances to the directrices d;( F;(x;,¥;), Fiy1(Xi11,Yi41)) i-e. polygon sides

— |y Ceip1=x)+x(Vi=Yis ) HXiVit1—Xi+1YVil (5)
Vi1 x)2+ig1-Yi)? ’

T

where i = 1,---, k. The coordinates of regular polygon vertices are x; = cos(2mwi/k) and y; = sin(2mi/k), if the
polygon inscribed into unit circle and F; = Fy,, is satisfied.
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2.2. Graphical representation

In this section of our paper we present the graphical representation of WFDS which are defined by the
equation (3) for £ = 3...6. Each surface is represented in three orthogonal projections and an axonometry (Fig. 1
— Fig. 4).

Figure 3. WFDS: k=35;
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Figure 4. WFDS: k=6.

Geometrical forms which are obtained from the equation (3) and given in Figures 1 — 4 are generated by the free
mathematics visualization tool VisuMath 3.0 (2015).

2.3. Possibility of application in architecture

Fig. 5 (a and b) shows parts of surfaces which belong to the group of surfaces (WFDS) generated as a visual
interpretation of the Erdds-Mordell inequality for a square (Fig. 2). The modelled part of the surface is reminiscent
of a bird with its wings spread out (Fig. 5a). The use of the skeletal system in the structural formation of a building
can be found in the works of the Spanish architect Santiago Calatrava.

Figure 5. WFDS: a) k = 4; part of surface (Fig. 2) b) k= 4; multiplication of surface (a)

WFDS generated in this way, for values of £ > 4, can have a geometrically bionic form (Fig. 3 and Fig 4)
and as such may have uses in architectural design (Fig. 7).

The regular octagon as the base for obtaining WFDS enables us to create various bionic forms which in its totality
incorporates multitude close/open spatial curved polygons. In the Fig. 6 it can be noticed, apart from the base
regular octagon, spatial curved triangles and quadrilaterals, either open or close, appear.
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Figure 6. WFDS: a)k=S§; b) k=8; top view

Figure 7. Bionic architecture (left: the Lotus Temple in New Delhi, India, by Fairiborz Sahba (1986),
Source: https://www.archdaily.com/158522/ad-classics-lotus-temple-fariborz-sahba/;
right: the Lotus Building in Wujin, China, by Studio 505 (2013) , Source: https://www.db-a.co/work/the-lotus-building/ )

3. CONCLUSIONS

In this paper focal-directorial generated 3D elements as spatial interpretation of certain geometric
inequalities for regular polygons have been presented. Due to their geometrically deterministic forms, flexibility
of shapes and compatibility with feasible structure featuring in recent trends in design, focal-directorial 3D
generated elements may be characterized as a designing pattern of an architectural-urban space.
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ABSTRACT

Recently, we have studied four-dimensional synthetic constructions of real regular quadric
sections of four-dimensional cones with an ellipsoidal (for unruled quadrics) and a one-sheet
hyperboloidal (for ruled quadrics) directrix in the affine classification. The four-dimensional space
is visualized in the double orthogonal projection onto two mutually perpendicular 3-spaces, in which
a four-dimensional object is represented by its two conjugated three-dimensional images in one
modeling 3-space. This way, tools of the classical descriptive geometry are generalized and
conveniently used with interactive computer graphics for synthetic constructions in the four-
dimensional space. In this contribution, synthetic constructions of all the real singular quadrics in
the double orthogonal projection are carried out. Each singular three-dimensional quadric is ruled,
and hence for finding the most of real cases, we choose hypercones containing a one-sheet
hyperboloid. Spatial sections of a one-sheet hyperboloidal hypercone through its singular point
(vertex) are three dimensional real cones or two real planes intersecting in a line. Considering a
hypercone with an improper singular point (i.e. four-dimensional hypercylinder) with a one-sheet
hyperboloidal directrix, the following spatial sections: an elliptic, parabolic, and hyperbolic cylinder,
or two parallel planes; can be derived. Furthermore, to obtain a double plane, or a proper and
improper planes, as spatial sections, we choose a singular four-dimensional quadric with at least a
singular line. We visualize hyperquadrics with their spatial sections in the double orthogonal
projection and support the constructions with their analytic derivations in the projective extension of
the real space. All visualizations are supplemented with interactive 3D models with step-by-step
constructions. The purpose of the presented work is to show how a generalization of descriptive
geometry methods of Monge’s projection is applied for a deeper understanding and investigation of
the properties of four-dimensional hyperquadrics.

Keywords: four-dimensional visualization; double orthogonal projection; descriptive
geometry; quadrics; computer graphics

INTRODUCTION

Conics are often defined as planar sections of quadratic conical and cylindrical surfaces. Constructions of
their images in various projections are fundamental parts of descriptive geometry or methods of visualization. The
study of these images is important for a deeper understanding of synthetic properties of conics. We use a similar
method to construct images of quadrics as spatial sections of quadratic conical or cylindrical hypersurfaces in the
four-dimensional space. For a comprehensive study of synthetic and analytic properties of conics and quadrics
with the emphasis on the visual aspect see (Glaeser et. al. 2016; Odehnal et al. 2020). For a detailed synthetic
view on the projective geometry of quadrics see (Baker; 1923). For the analytic geometry of quadrics in the
projective extension of the real space see (Semple et al; 1952, Part II, Chapter IX) or (Cassas-Alvero, 2014,
Chapters 6-7).

To visualize images of objects in the four-dimensional space, we use the method of the double orthogonal
projection of the 4-space onto two mutually perpendicular 3-spaces. The method is an analogy to Monge’s
orthogonal projection of 3-dimensional objects onto two mutually perpendicular planes. Constructions of three-
dimensional images of elementary four-dimensional objects are described in (Zamboj; 2018a), constructions of
spatial sections of polytopes in (Zamboj; 2018b).
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As same as regular conics are collinear images of the directing circle of a circular cone, regular quadrics are
collinear images of the directing quadric of the given hypercone. Furthermore, collineation preserves collinearity,
and hence we need different directing quadrics to derive ruled and unruled quadrics. Particularly, unruled regular
quadrics: an ellipsoid, two-sheet hyperboloid, and paraboloid are spatial sections of a conical hypersurface with a
spherical directrix, i.e. a surface generated by joining points of a sphere with noncospatial vertex. Ruled regular
quadrics: a one-sheet hyperboloid and hyperbolic paraboloid, are spatial sections of a conical hypersurface with a
one-sheet hyperboloidal directrix. The affine classification and constructions of regular quadric sections of conical
hypersurfaces are described in (Zamboj; 2019). Parallel sections of hypercones and multidimensional analogies
are discussed in (Zamboj; 2020). In this contribution, the classification and constructions of real singular cases of
quadric sections are finalized.

2. PRELIMINARIES

2.1. The double orthogonal projection of the 4-space onto two mutually perpendicular 3-spaces

Some necessary preliminary constructions in the double orthogonal projection are summarized from the
references above in the following lines. In Monge’s projection, a point P(xp, ¥p, Zp) is orthogonally projected
into the horizontal plane (x,y) and vertical plane v(x, z). The plane v is chosen to be the drawing (picture)
plane, and the plane m is rotated about the x-axis to the drawing plane such that the axes z and y have opposite
directions. After the rotation, both orthogonal images — the top view P, (xp, yp) in 1 and the front view P, (xp, zp)
in v, lie on the ordinal line (or line of recall) perpendicular to the x-axis in the drawing plane. The principle of
Monge’s projection of a circular cone of revolution with its base in 7 is visualized in Figure 1a.

=ty :5:“
H

. orth. projections
- a8

orth. projections

rotation

TT.U/ Qw K) rotation

(@) (b)
Figure. 1: (a) Principle of Monge’s projection — visualization of a circular cone, and (b) principle of the double orthogonal projection —
visualization of a spherical hypercone.

In the four-dimensional case with the coordinate axes x, y, z, w, a point P(xp, Vp, Zp, Wp) is orthogonally projected
into mutually perpendicular 3-spaces Z(x, ¥, z) and Q(x, y, w). Let Q be a modeling 3-space and Z is rotated about
the plane m(x,y) into this modeling 3-space. After the rotation, the images P;(xp,Vp,2p) (5-image) and
P,(xp,yp, Wwp) (2-image) lie in the modeling 3-space on a perpendicular to w(x, y) — ordinal line. The principle
of the double orthogonal projection of spherical hypercone with its spherical base in the 3-space = is visualized
in Figure 1b.

P3

Figure. 2: Conjugated images of a point, line, and plane. Intersections with reference 3-spaces are highlighted
Interactive model: https://www.geogebra.org/m/zhztkfnp
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M. ZAMBOJ: SINGULAR QUADRIC SECTIONS OF HYPERCONES

The modeling 3-space, in which we perform our constructions is a virtual three-dimensional space. The observer
can move in this 3-space to any point. For this reason, we supplement our (two-dimensional) figures with 3D
interactive models in the GeoGebra Book (Zamboj, 2020b).!

Similarly to Monge’s projection, points, lines, and planes in general positions (with respect to the reference
system) in the 4-space have two conjugated images (Figure 2).

A 3-space is represented by its intersections with the 3-spaces = and (2, called traces (Figure 3).

Figure. 3: A visualization of a 3-space X given by its traces w and §. A point P lies in X and is located in a plane parallel to €. Images of a
perpendicular p to X through P are perpendiculars to images of the traces
Interactive model: https://www.geogebra.org/m/yduyywqe

Constructions of true shapes, measuring lengths and angles in the double orthogonal projection are straightforward
generalizations of constructions in the Monge’s projection.

[1]

Yz

Figure. 4: Conjugated images of a spherical hypercone I with a base sphere B and a spherical section ¢ of I' and a 3-space parallel to the
reference 3-space E(x, y, )
Interactive model: https://www.geogebra.org/m/unmtdar5

To understand further constructions of images of various hypercones and hypercylinders, we demonstrate the
visualization on a spherical hypercone described above. Let I" be a right spherical hypercone with a directing

! Since the figures are only projections of three-dimensional models, we highly recommend the reader to follow the interactive visualizations.
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